
Predicate Monads:
A Framework for Proving Generic Properties of Monadic Programs via Rewriting

Edwin Westbrook
Galois Inc.

westbrook@galois.com

Gregory Malecha

gmalecha@gmail.com

1. Introduction
Monads are a simple, elegant, and powerful way to specify effect-
ful programs. They provide a compositional framework for build-
ing program specifications that supports a wide variety of differ-
ent sorts of effects, including mutable state, continuations, errors
and exceptions, non-determinism, and many more (Moggi 1991).
These effects are defined in a given monad M by exposing a set of
monadic operations to implement these effects in M . For instance,
if M supports mutable state it often exposes it through the follow-
ing type signature:

returnM :: ∀A.A→M A
(>>=) :: ∀A.∀B.M A→ (A→M B)→M B
getM :: M S
putM :: S →M unit

The first two of these, returnM and >>=, are the usual monad
operations, for building pure computations and for sequencing two
computations together, while getM and putM define operations for
reading and writing, respectively, the current value of the mutable
state of type S. Note that we also use the standard abbreviation

m1 >> m2 , m1 >>= λx : unit :m2 .

to sequecne a computation m1 followed by a computation m2 that
does not inspect the return value of m1.

Each monad also comes with a set of reasoning principles,
called generally the monad laws, for reasoning about programs
written in that monad. These monad laws take the form of a set
of equalities on programs. For instance, in addition to the standard
monad laws for returnM and >>=, a monad that supports mutable
state will generally satisfy the following state monad laws, stating
that getM and putM behave as expected:

putM s >> putM s′ ≈ putM s′

putM s >>= getM ≈ putM s >> returnM s
getM >>= putM ≈ returnM tt
getM >>= λs. getM >>= f s ≈ getM >>= λs. f s s

The notation ≈ denotes the equality relation for the monad M ,
which may or may not correspond with the built-in equality of
the meta-logic (i.e., with intensional equality in Coq); we assume
every type comes equipped with a pre-order, which we formalize
in Coq with a type class, and we write <∼ for this pre-order and

[Copyright notice will appear here once ’preprint’ option is removed.]

(≈) , (<∼)∩(<∼)−1 as the equivalence relation derived from<∼.
Technically speaking, we formalize monads as functors over types
plus orders, and the versions of the monad laws in our formulation
include monotonicity constraints, i.e., they require that the various
components be Proper, but we ignore this detail here for space
reasons.

A monad that supports multiple effects will additionally include
monad laws for how those effects interact; e.g., a monad with
mutable state and errors might include the law

putM s >> failM ≈ failM

to indicate that a failure eradicates all mutable state modifications.
A similar monad with these effects, however, might not satisfy this
law, if, for instance, failures can be recovered from.

Monad laws are a powerful tool that can be used to prove a wide
variety of properties of effectful programs, by using them as rewrite
rules. For instance, Gibbons and Hinze use this approach to verify
that a number of effectful programs have the same behavior as
their corresponding functional specifications (Gibbons and Hinze
2011). The key difficulty comes when we want to prove properties
other than equalities. Monad laws cannot, for instance, prove that a
function satisfies a given pre- and post-condition, because this is not
a property that can be defined in terms of equality. Although there
are approaches specifically for proving pre- and post-conditions,
such as the Hoare monad (Nanevski et al. 2008) and the Dijkstra
monad (Swamy et al. 2013), it is not clear that these approaches
generalize to effects other than mutable state, or to combinations of
effects. It is also not clear how to derive the Hoare monad or the
Dijkstra monad structure for an arbitrary monad that does support
mutable state.

In this talk, we will present ongoing work on a general frame-
work, called predicate monads, for proving properties of effectful
programs that overcomes these difficulties. The goal of this ap-
proach is to leverage the power and elegance of the monad laws,
but apply them not to monadic programs themselves but to pred-
icates over monadic computations. More technically, in our ap-
proach, each monad M is associated with a so-called predicate
monad PM which is, intuitively, a monad of predicates on com-
putations inM . If we viewM as a domain-specific semantics, then
PM is a domain-specific logic. The predicate monad PM supports
predicates over all of the monadic operations of M , allowing it to
reason about arbitrary effects. This reasoning comes in the form of
predicate monad laws, which allow predicates to be proved using
rewriting. Additionally, if M is defined using monad transformers,
a powerful and compositional way to build monads (Liang et al.
1995), then PM can be built using the same monad transformers.
This allows us to derive predicate monads for a wide variety of
monads and effects in a straightforward manner.

Predicate Monads 1 2016/10/14



2. Building Predicate Monads
To define predicate monads formally, we capture the notion as
a new sort of computational effect, the “logic over M” effect.
Just as with other sorts of effects, this means adding a number of
monadic operations and a set of monad laws for those operations.
The operations for predicate monads are:

forallP :: ∀A.∀B.(A→ PM B)→ PM B
existsP :: ∀A.∀B.(A→ PM B)→ PM B
impliesP :: ∀A.PM A→ PM A→ PM A
singleP :: ∀A.M A→ PM A

Intuitively, the first three operations build predicates corresponding
to universal quantification, existential quantification, and implica-
tion. Note that conjunction and disjunction operators andP and orP
can be defined from forallP and existsP, respectively, as can the
greatest predicate trueP and the least predicate falseP. We define

assertP (P : Prop) : PM A , existsP(λ p :P . trueP)

as the predicate that holds iff P is provable. Finally, the fourth
operation above, singleP, builds the singleton predicate, i.e., the
least predicate containing a given monadic computation.

Leastness here is with respect to the pre-order<∼ of PM , which
can be viewed as entailment over predicates; i.e., p1 <∼ p2 means
that any computations which satisfy p1 will always satisfy p2. The
equality ≈ associated with PM thus denotes logical equivalence
of two predicates, so that p1 ≈ p2 means that p1 and p2 hold
for the same computations in M . To define the notion of which
computations in M satisfy a predicate in PM , we define

m � p , singleP m <∼ p

to capture the notion that computation m of type M A satisfies
predicate p of type PM A.

When we reason about predicate monads, we use the following
laws which are stated in terms of the ordering relation on the
predicate monad.

singleP (returnM x) ≈ returnM x
singleP (m >>= f) ≈ (singleP m) >>= (λx. singleP (f x))

forallP p <∼ p x forallx
(∀x.p <∼ q x) → p <∼ forallP q

p x <∼ existsP p
(∀x.p x <∼ q) → existsP p <∼ q

andP p1 p2 <∼ p3 ↔ p1 <∼ impliesP p2 p3

(∀x.∀y.x <∼ y → p x <∼ q x) → forallP p <∼ forallP q
(∀x.∀y.x <∼ y → p x <∼ q x) → existsP p <∼ existsP q
(p′1 <∼ p1 ∧ p2 <∼ p′2)→ impliesP p1 p2 <∼ impliesP p′1 p

′
2

The first two laws state that applying singleP to a monadic oper-
ation in M always yields an application of the same monadic op-
eration in PM . That is, returnM x in PM builds a predicate for
recognizing the computation returnM x in M , while p >>= q in
PM builds a predicate for recognizing computations that are equiv-
alent, modulo the monad laws, to m >>= f in M for some m � p
and some f such that ∀x.fx � Px. The second set of laws state
that forallP, existsP, and impliesP satisfy usual introduction and
elimination rules for the corresponding connectives in first-order
logic. Note that, viewed differently, the laws for forallP and existsP
state that<∼ is a complete lattice, while the law for impliesP states
that <∼ is a Heyting algebra. Finally, the third set of rules express
monotonicity constraints, also known in Coq as Proper constraints,
on the predicate monad operators. Not shown, for space reasons,
are laws stating that the logical connectives commute with >>=;
e.g., (forallP f) >>= g ≈ forallP (λx. f x >>= g).

In order to build predicate monads with this structure, we start
by defining the predicate monad PIdentity for the simplest possible
monad, the Identity monad. It turns out that the Set monad, defined
as Set A , A → Prop has the desired structure, by defining
forallP, existsP, and impliesP to be the straightforward application
of the corresponding combinators in Prop, and by defining

p <∼ q , ∀x.p x→ ∃y.x <∼ y ∧ q y
meaning that entailment in the Set predicate monad corresponds to
a “covering” property, where each element of the lesser set has a
greater element in the greater set. It also turns out that, for many
standard monad transformers T , we can define PT (M) , T (PM ),
though, again, we omit the details here. This means that, we can
build up predicate monads for a wide variety of different sorts
of effects, using the same “transformer stack” used to build the
underlying monad.

3. Proving Properties using Predicate Monads
We now briefly consider how to formulate and prove Hoare-style
pre- and post-conditions using predicate monads, as an illustrative
example. We start with this definition:

HoareP(φ : S→Prop)(ψ : S→A→S→Prop)(p : PM A) ,
do s← getM

impliesP (assertP (φ s))
(do x← catchM p (λe. falseP)

s′ ← getM
andP assertP (ψ s x s′) (returnM x))

If we pass trueP for the argument p, then this intuitively captures
total correctness for pre-condition φ and post-condition ψ. It is
satisfied by computations equivalent to one that first reads the
input state s, and, if φ s holds, performs any computation m
with return value(s) x such that catchM m f ≈ m — i.e., any
computation with no errors — and then gets the output state s′

and returns x, such that ψ s x s′ holds. Note that this definition
says nothing about the internals of either M or PM , as long as
M and PM have the expected operations for mutable state and
error effects. This allows us to define Hoare-style pre- and post-
conditions generically, and also to prove properties — such as
the transitivity rule for Hoare logic — without reference to the
definition of M .

The reason to have the p, rather than always just using trueP
for p, is that HoareP is monotonic in p, so we can prove m �
HoareP φ ψ trueP by proving m <∼ HoareP φ ψ (singleP m),
which we can do by rewriting via both the monad and the pred-
icate monad laws. For instance, if m has the form getM >>=
λs. putM (f s) >> returnM (g s), then rewriting this formula
and then applying the Proper-ness rules for >>= yields

∀s.φ s→ ψ s (g s) (f s)

which is exactly what we would expect; e.g., catchM m (λe. falseP)
in this case rewrites to m.

References
J. Gibbons and R. Hinze. Just do it: Simple monadic equational reasoning.

In ICFP, 2011.
S. Liang, P. Hudak, and M. Jones. Monad transformers and modular

interpreters. In POPL, 1995.
E. Moggi. Notions of computation and monads. Inf. Comput., 93(1), 1991.
A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot:

Dependent types for imperative programs. In ICFP, 2008.
N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. Verify-

ing higher-order programs with the dijkstra monad. In PLDI, 2013.

Predicate Monads 2 2016/10/14


