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Abstract. Foundational proof assistants simultaneously offer both ex-
pressive logics and strong guarantees. The price they pay for this flexibil-
ity is often the need to build and check explicit proof objects which can be
expensive. In this work we develop a collection of techniques for building
reflective automation, where proofs are witnessed by verified decision pro-
cedures rather than verbose proof objects. Our techniques center around
a verified domain specific language for proving, Rtac, written in Gallina,
Coq’s logic. The design of tactics makes it easy to combine them into
higher-level automation that can be proved sound in a mostly automated
way. Furthermore, unlike traditional uses of reflection, Rtac tactics are
independent of the underlying problem domain. This allows them to be
re-tasked to automate new problems with very little effort. We demon-
strate the usability of Rtac through several case studies demonstrating
orders of magnitude speedups for relatively little engineering work.

1 Introduction

Foundational proof assistants provide strong guarantees about properties ex-
pressed in rich logics. They have been applied to reason about operating sys-
tems [29], compilers [32], databases [35], and cyber-physical systems [18], just
to name a few. In all of these contexts, users leverage the expressivity of the
underlying logic to state their problem and use the automation provided by the
proof assistant, often in the form of a “tactic language,” to prove the properties
they care about, e.g. the correctness of a compiler.

The problem with this rosy picture is that foundational proofs are large be-
cause they need to spell out the justification in complete detail. This is especially
true in rich dependent type theories such as Coq [17] and Agda [1] where proofs
are first-class objects with interesting structural and computational properties.
Several recent projects have made the overhead of proof objects painfully clear:
the Verified Software Toolchain [2], CertiKOS [41], and Bedrock [15]. All of these
projects run into resource limitations, often in memory, but also in build times.
Proof generating automation tends to work well when applied to small prob-
lems, but scales poorly as problems grow. To solve this problem we need a way
to extend the proof checker in a trustworthy way so that it can check certain
properties more efficiently. Doing this allows us to dramatically improve both
the time and memory usage of foundational verification.



The expressivity of foundational constructive proof assistants provides a tech-
nique for “extending the proof checker”: computational reflection [40,30,9,6,5].
Using computational reflection, a developer implements a custom program to
check properties outright and proves that the program is sound, i.e. if it claims
that a property is provable, then a proof of the property exists. With computa-
tional reflection, previously large proof objects can be replaced by calls to these
custom decision procedures. Executing these procedures can be much more ef-
ficient than type checking explicit proof terms. However, the current approach
to building these reflective procedures makes them difficult to construct, cum-
bersome to adapt to new instances, and almost impossible to compose to build
higher-level automation.

In this work we show how to easily build reflective automation that is both
extensible and efficient. Our approach is to separate the core reflective language
from the domain-specific symbols that the automation reasons about. This en-
ables us to build a Domain Specific Language (DSL), Rtac, for reflective automa-
tion that is reusable across any base theory. We show that näıvely translating
automation from Ltac, Coq’s built-in tactic language, to Rtac typically leads to
at least an order of magnitude speedup on reasonable problem sizes.

We begin with a brief primer applying computational reflection to automate
monoidal equivalence checking (Section 2). In Section 3 we highlight our tech-
niques by reworking this example in Rtac highlighting the key pieces of our work
from the client’s point of view. We then proceed to our contributions:

– We develop MirrorCore, a reusable Coq library for general and extensible
computational reflection built around a core λ-calculus (Section 4).

– We build Rtac—the first foundational, feature-rich reflective tactic language
(Section 5). By separating domain-specific meaning from generic manipula-
tion, Rtac is able to provide high-level building blocks that are independent
of the underlying domain. Additionally the user-exposed interface makes it
easy to combine these general tactics into larger, domain-specific automation
and derive the corresponding soundness proofs essentially for free.

– We demonstrate the extensible nature of Rtac by developing a reflective
setoid rewriter as an Rtac tactic (Section 6). The custom implementation
follows the MirrorCore recipe of separating the core syntax from the
domain-specific symbols allowing the rewriter to be re-tasked to a range of
problem domains. In addition, the procedure is higher-order and can invoke
Rtac tactics to discharge side conditions during rewriting.

– We evaluate MirrorCore and Rtac by developing reflective procedures for
different domains (Section 7). We show that our automation has substantially
better scaling properties than traditional Ltac automation has and is quite
simple to write in most cases.

Before concluding, we survey a range of related work related to automation
alternatives in proof assistants (Section 8).

All of our results have been mechanized in the Coq proof assistant. The
MirrorCore library and examples are available online:

https://github.com/gmalecha/mirror-core

https://github.com/gmalecha/mirror-core


2 A Computational Reflection Primer

In this section we give an overview of the core ideas in computational reflection
which we build on in the remainder of the paper. We base our overview on the
problem of proving equality in a commutative monoid. For example, consider
proving the following problem instance, where ⊕ is the plus operator in the
monoid.

x⊕ 2⊕ 3⊕ 4 = 4⊕ 3⊕ 2⊕ x
A näıve proof would use the transitivity of equality to witness the way to permute
the elements on the left until they match those on the right. While not partic-
ularly difficult, the proof is often at least quadratic in the size of the property,
which means that checking large problems quickly becomes expensive.

To use computational reflection to prove this theorem, we write a procedure
that accepts the two expressions and checks the property directly. We first define
a syntactic (also called “reified”) representation of the problem. In this example,
we use the following language.

(expressions) e ::= Nn |R i | e1⊕ e2
The language represents constants directly (using N) but it hides quantified
values such as x behind an index (using R). The syntactic representation is
necessary because computations can not inspect the structure of terms, only
their values. For example, pattern matching on x ⊕ y does not reduce since x
and y are not closed values. A syntactic representation exposes the syntax of the
goal, e.g. R 1⊕R 2, which functions can inspect.

We formalize the meaning of the syntax through a “denotation function”
(J−Kρ) parameterized by the environment of opaque symbols (ρ). For our syntax,
J−Kρ has three cases:

JNnKρ = n JRxKρ = ρ x Je1⊕ e2Kρ = Je1Kρ ⊕ Je2Kρ
Using this syntax, the problem instance above could be represented as:

JR 0⊕N 2⊕N 3⊕N 4K{07→x} = x⊕ 2⊕ 3⊕ 4
JN 4⊕N 3⊕N 2⊕R 0K{07→x} = 4⊕ 3⊕ 2⊕ x

With the syntax in hand, we can now write a procedure (Mcheck) that de-
termines whether the terms are equal by flattening each expression into a list
and checking whether one list is a permutation of the other. The soundness the-
orem of Mcheck states that if Mcheck returns true then the meaning of the two
arguments are provably equal. Formally,

Mcheck sound : ∀e1 e2, Mcheck e1 e2 = true→ ∀ρ, Je1Kρ = Je2Kρ
Using Mcheck sound we can prove the example problem with following proof
which is linear in the size of problem.

Mcheck sound
(R 0⊕N 2⊕N 3⊕N 4) (N 4⊕N 3⊕N 2⊕R 0) (syntactic problem)
eq refl (proof Mcheck returned true)
{0 7→ x} (environment)



3 Rtac from the Client’s Perspective

Before delving into the technical machinery that underlies our framework we
highlight the end result. In Figure 1, we excerpt an Rtac implementation of the
monoidal equivalence checker described in Section 23. The automation builds
directly on the Coq definitions of commutative monoids excerpted in step (0).

The first step is to build a data type that can represent the properties that
we care about. In Section 2 we built a custom data type and spelled out all of
the cases explicitly. Here, we build the syntactic representation by instantiating
MirrorCore’s generic language (expr) with domain specific types (mon_typ)
and symbols (mon_sym). As we will see in Section 4, the expr language provides
a variety of features that are helpful when building automation. Once we have
defined the syntax, we use MirrorCore’s programmable reification plugin to
automatically construct syntactic representations of the lemmas that we will use
in our automation (step (2)).

In step (3), we use these lemmas to write our reflective automation using
the Rtac DSL. The entry point to the automation is the Mcheck tactic but
the core procedures are iter_left and iter_right which permute the left-
(iter_left) and right-hand sides (iter_right) of the equality until matching
terms can be cancelled. Each tactic consists of a bounded recursion (REC) where
the body tries one of several tactics (FIRST). For example, iter_right tries
to apply lem_plus_c to remove a unit element from the right-hand-side. The
double semicolon sequences two tactics together. It applies the second tactic to
all (ON_ALL) goals produced by the first or applies a list of tactics one to each
generated subgoal (ON_EACH).

In step (4) we prove the soundness of the automation. Soundness proofs are
typically a major part of the work when developing reflective tactics; however,
the compositional nature of Rtac tactics makes proving soundness almost com-
pletely automatic. The rtac_derive_soundness_default (Ltac) tactic proves
the soundness of a tactic by composing the soundness of its individual pieces.

Finally, we use Mcheck to verify equivalences in the monoid (step (5)). On
small problems, the difference between Ltac and our technique is negligible. How-
ever, for large problem sizes, our automation performs several orders of magni-
tude faster. We defer a more detailed evaluation to section 7.

Building and Evolving Automation While the goal of automation is a
“push-button” solution, it rarely starts out that way. The automation shown
in Figure 1, like most Rtac automation, was constructed incrementally in much
the same way that users build automation using Ltac [14]. The developer in-
spects the goal and finds the next thing to do to make progress. This same
process works when developing automation in Rtac. When the developer runs a
tactic that does not solve the goal, a new goal is returned showing what is left
to prove. By default, the process of constructing the syntactic representation is

3 The full code can be found in the MirrorCore distribution.

https://github.com/gmalecha/mirror-core


(* (0) Develop the theory of monoids. *)

Parameter star : N → N → N. (* ‘‘a ⊕ b’’ *)

Axiom plus_assoc_c1 : ∀ a b c d, d = a ⊕ (b ⊕ c) → d = (a ⊕ b) ⊕ c.

(* (1) Define a syntax for the problem & setup reification *)

Inductive mon_typ := tyArr (_ _ : mon_typ) | tyProp | tyNat.
Inductive mon_sym := Plus | N (_ : N).
(* . . .denotation functions and a few proofs about these types. . . *)

Let mon_term := expr mon_typ mon_sym.

Reify Declare Syntax reify_mon_term :=
CFirst (CPatterns patterns_monoid :: . . .).

(* (2) Automatically build syntactic lemmas *)

Reify BuildLemma < reify_mon_typ reify_mon_term reify_mon_term >
lem_plus_assoc_c1 : plus_assoc_c1.

Definition lem_plus_assoc_c1_sound : lemmaD lem_plus_assoc_c1 :=
plus_assoc_c1.

(* . . .more lemmas. . . *)

(* (3) Build automation using tactics *)

Definition iter_right (n : N) : rtac :=
REC n (fun rec ⇒

FIRST [ EAPPLY lem_plus_unit_c

| EAPPLY lem_plus_assoc_c1 ;; ON_ALL rec

| EAPPLY lem_plus_assoc_c2 ;; ON_ALL rec

| EAPPLY lem_plus_cancel ;;
ON_EACH [ SOLVE solver | IDTAC ] ]) IDTAC.

Definition iter_left (k : rtac) (n : N) : rtac :=
REC n (fun rec ⇒

FIRST [ EAPPLY lem_plus_unit_p

| EAPPLY lem_plus_assoc_p1 ;; ON_ALL rec

| EAPPLY lem_plus_assoc_p2 ;; ON_ALL rec

| k ]) IDTAC.

Definition Mcheck : rtac := . . .

(* (4) Prove the automation sound *)

Lemma iter_right_sound : ∀ Q, rtac_sound (iter_right Q).
Proof. unfold iter_right. intros. rtac_derive_soundness_default. Qed.

Lemma iter_left_sound : ∀ Q k, rtac_sound k → rtac_sound (iter_left k Q).
Proof. unfold iter_left. intros. rtac_derive_soundness_default. Qed.

(* (5) Use the reflective automation *)

Goal x ⊕ 2 ⊕ 3 ⊕ 4 = 4 ⊕ 3 ⊕ 2 ⊕ x.
Proof. run_tactic reify_mon_term Mcheck Mcheck_sound. Qed.

Fig. 1. Implementing a monoidal cancellation algorithm using Rtac.



hidden from the user and new goals are returned after they have been converted
back into their semantic counter-parts.

It is important to note, that while we can develop tactics incrementally, Rtac
is not built to do manual proofs in the style of Ltac. When run alone, the core
Rtac tactics (e.g. APPLY) are often slower than their Ltac counter-parts. Rtac’s
speed comes from the ability to replace large proof terms with smaller ones, and
larger proofs only arise when combining multiple reasoning steps.

4 The MirrorCore Language

A key component of reflective automation is the syntactic representation of the
problem domain. We need a representation that is both expressive and easy to
extend. In this section we present MirrorCore’s generic expr language which
we used in Section 3.

Mathematically, the expr language is the simply-typed λ-calculus augmented
with unification variables (see Figure 2). The expr language mirrors Coq’s core
logic, providing a rich structure that can represent higher-order functions and
λ-abstractions. To provide extensibility, the language is parametric in both a
type of types and a type of symbols. This parameterization allows the client
to instantiate the language with domain-specific types, e.g. the monoid carrier,
and symbols, e.g. monoid plus. Further, this compartmentalization makes it
possible to implement and verify a variety of generic procedures for term ma-
nipulation. For example, MirrorCore includes lifting and lowering operations,
beta-reduction, and a generic unification algorithm for the expr language.

Following the standard presentation of the λ-calculus, the language is divided
into two levels: types and terms. The type language is completely user-defined
but has two requirements. First, it must have a representation of function types
so that λ-abstractions and applications can be typed. Second, it requires de-
cidable equality to ensure that type checking expr terms is decidable. In order
to use Rtac (which we discuss in Section 5) the type language also requires a
representation of Coq’s type of propositions (Prop).

The term language follows a mostly standard presentation of the λ-calculus
using De Bruijn indicesto represent bound variables. To support binders, the de-
notation function of terms

(
tu
tv J−Kt

)
is parameterized by two type environments

(for unification variables, tu, and regular variables, tv) and the result type (t).
These three pieces of information give us the type of the denotation. Concretely,
the meaning of a term is a Coq function from the two environments (with types
JtuK

−→τ and JtvK
−→τ ) to the result type (JtKτ ). If the term is ill-typed then it has

no denotation, which we encode using Coq’s option type. The denotation func-
tion returns Some with the denotation of the term if it is well-typed, or None

if the term is ill-typed4. The choice to use Coq’s function space for the deno-

4 We permit ill-typed terms in our representation to avoid indexing terms by their
type. Indexed terms are larger which increases the time it takes to type-check them
thus slowing down the automation.



Types (user specified, with restrictions)

τ ::= tyProp | τ1 → τ2 | ...
J−Kτ : τ → Type

(Environments) J−K
−→τ : list τ → Type

JtyPropKτ = Prop Jt1 → t2Kτ = Jt1Kτ → Jt2Kτ

Domain-specific constants (user specified)

〈−〉τ : b→ τ J−Kt : b→ option JtKτ

Terms E ::= e1 e2 | λτ.e | x | ?u | dbe
tu
tv

J−Kt : E → option
(
JtuK

−→τ → JtvK
−→τ → JtKτ

)
tu
tv

Je1 e2Kt = λdu dv.
(
tu
tv

Je1Kt′→t du dv
) (

tu
tv

Je2Kt′ du dv
)

tu
tv

Jλt.eKt→t′ = λdu dv a.
tu
tv·tJeKt′ du (dv · a)

tu
tv

JxKt = λ dv. dv x if dv x : JtKτ
tu
tv

J?uKt = λdu . du u if du u : JtKτ
tu
tv

JdbeKt = λ . JbKt

Fig. 2. MirrorCore’s calculus for syntactic terms, typing- and denotation functions,
using mathematical notation.

tation means that some of the theorems in MirrorCore rely on the axiom of
functional extensionality.

The precise placement of the option in the type of the denotation func-
tion demarks the phase separation between type checking and computing the
denotation. This phase separation is necessary to define the meaning of abstrac-
tions since the abstraction can only be introduced if the syntactic body has a
denotation in the extended environment.

tu
tv Jλt′.eKt′→t = Someλdu dv.

(
λx.D du (x · dv)

)
if tu

t′·tvJeKt = SomeD

Without knowing that D is well-typed under the extended context, there is no
way to construct a value of type JtKτ since not all types in Coq are inhabited.

The expr language also includes a representation of unification variables (?u),
which are place-holders for arbitrary terms. The difficulty in representing unifi-
cation variables comes when they are mixed with local variables. For example,
suppose we represent the following proposition in expr

?u =?u ∧ ∀x : N, ?u = x

Focusing on the right-hand conjunct, it seems that we should instantiate ?u with
x; however, x is not in scope in the left-hand conjunct. We solve this problem in
the expr language by preventing the instantiation of unification variables from
mentioning any locally introduced variables. This choice leads to a more concise
representation but requires that we are careful when dealing with unification



variables that are scoped with respect to different contexts. We will return to
this point in Section 5.

5 Rtac: Verification Building Blocks

In this section we implement a fully-reflective proving language, called Rtac,
modeled on Ltac, Coq’s built-in tactic language. Rtac allows clients to build com-
pletely reflective automation easily without ever needing to write Coq functions
that inspect terms. In fact, after the reification step, Rtac almost completely
encapsulates the fact that we are using computational reflection at all.
Rtac packages unification variables, premises, and a conclusion, into a “goal”

that programs (also called tactics) operate on. Combining these pieces into a
simple interface allows Rtac to cleanly export larger granularity operations that
rely on multiple pieces. For example, a common operation is to apply a lemma
to the conclusion and convert its premises into new goals [36]. Doing this re-
quires inspecting the lemma, constructing new unification variables, performing
unifications, constructing new goals, and justifying it all using the lemma’s proof.

Implementing Rtac requires solving two intertwined problems. In Section 5.1,
we describe how we represent and reason about proofs embedded in arbitrary
contexts which contain regular variables, unification variables, and propositions.
Our reasoning principles allow us to make inferences under these contexts, and
evolve the contexts by instantiating unification variables in the context without
needing to re-check proofs. In Section 5.2, we present our compositional phrasing
of tactic soundness which allows us to easily compose sound tactics to produce
sound automation. We close the section (Section 5.3) by discussing Rtac’s client-
facing interface including a subset of the tactics that we have implemented and
an example using them to build a small piece of automation.

5.1 Contexts & Contextualized Proofs

End-to-end, Rtac is about building proof of implications between two proposi-
tions. That is, if an Rtac tactic runs on a goal P and returns the goal Q then
the soundness of the tactic proves Q → P . However, in order to incrementally
construct these proofs, we need to strengthen the specification. What is missing
from this global specification is the ability to construct a proof in a context
that contains variables, unification variables (possibly with their instantiations),
and propositional facts. In Rtac, this information is represented by the context
data-type defined in Figure 3. The meaning of a context is a function from
propositions in the context to propositions outside of the context. That is,

tu
tv JcKC `− :

(
Jtu · cuK

−→τ → Jtv · cvK
−→τ → Prop

)
→
(
JtuK

−→τ → JtvK
−→τ → Prop

)
where cu and cv represent the unification variables and real variables introduced
by the context. For exposition purposes, we will consider tu and tv to be empty
simplifying this definition to the following:

JcKC `− :
(
JcuK

−→τ → JcvK
−→τ → Prop

)
→ Prop



(Contexts) C ::= ε | C, ∀τ | C,∃τ | C, ∃τ=E | C,→ E

tu
tv

JcKC `− :
(
Jtu · cuK

−→τ → Jtv · cvK
−→τ → Prop

)
→ JtuK

−→τ → JtvK
−→τ → Prop

tu
tv

JεKC `P , P
tu
tv

Jc,→ eKC `P , tu
tv

JcKC ` (λdu dv.
tu
tv

JeKProp du dv → P du dv)
tu
tv

Jc,∀tKC `P , tu
tv·tJcK

C ` (λdu dv. ∀x : JtKτ . P du (dv · x))
tu
tv

Jc,∃tKC `P , tu·t
tv

JcKC ` (λdu dv. ∀x : JtKτ . P (du · x) dv)
tu
tv

Jc,∃t=eKC `P , tu·t
tv

JcKC ` (λdu dv. ∀x : JtKτ . x = tu
tv

JeKt du dv → P (du · x) dv)

Fig. 3. The definition and denotation of contexts. The denotation of the existential
quantifier as a universal quantifier captures the parametricity necessary for local proofs.

Since it is quite common to work within these contexts, we will use subscripts
to denote pointwise lifting. For example,

P →c Q , λdu dv. P du dv → Qdu dv

The intuitive interpretation of contexts, denoting unification variables as ex-
istential quantifiers, captures that property that they can be choosen during the
proof, but this interpretation is not sufficient for compositional proofs. To see
why, consider a proof of JcKC `P and JcKC `Q. We would like to combine these
two proofs into a proof of JcKC ` (P ∧c Q) but we can not because the two proofs
may make contradictory choices for existentially quantified values. For example,
if c is ∃x : N, P is x = 0, and Q is x = 1 both proofs exist independently
by picking the appropriate value of x but the two do not compose. To solve
this problem, we use the parametric interpretation of contexts defined in Fig-
ure 3 where unification variables are interpreted as universal quantifiers with an
equation if they are instantiated. This interpretation captures the parametricity
necessary to compose proofs by ensuring that proofs that do not constrain the
values of unification variables hold for any well-typed instantiation.

The parametric interpretation provides us with several, powerful, reasoning
principles for constructing and composing proofs in contexts. The first two are
related to the applicative nature of the parametric interpretation of contexts.

ap : ∀c P Q, JcKC ` (P →c Q)→ JcKC `P → JcKC `Q
pure : ∀c P, P → JcKC `P

Leveraging these two definitions, we can perform logical reasoning under a con-
text. For example, we can use ap to prove modus ponens in an arbitrary context.

→ -E : ∀c P Q, JcKC ` (P →c Q)→ JcKC `Q→ JcKC `Q

Similar rules hold for proving conjunctions and disjunctions under arbitrary
contexts.

The final reasoning principle for contexts comes when using facts that occur
in the premises. The following proof rule allows us to show that facts in the



context (p ∈ c) are provable under the context.

assumption : ∀c p, p ∈ c→ JcKC ` JpK

Context Morphisms In addition to reasoning parametrically in a context, it is
also necessary to evolve contexts by instantiating unification variables. Context
morphisms capture the property that any reasoning done under the weaker con-
text is also valid under the stronger context. The following definition captures
this transport property which holds for any two contexts c and c′ where c′ is an
evolution of c, written c c′.

c c′ , ∀P, JcKC `P → Jc′KC `P

The core rule for context evolution is the one for instantiating a unification
variable.

c,∃τ  c,∃τ=e if cucv JeKτ is defined

The proof of this rule is trivial since the context on the right simply introduces an
additional equation that is not necessary when appealing to the assumption. In
addition to instantiating unification variables, context evolution is both reflexive
and transitive which allows us to talk about zero or multiple context updates
in a uniform way. In addition, context evolution satisfies the natural structural
rules allowing updates of any piece of the context. For example,

c c′ → c,∀τ  c′,∀τ and c c′ → c,∃τ  c′,∃τ

Similar rules hold for all of the context constructors and all follow straightfor-
wardly from the definition of  .

5.2 Implementing Rtac

The contextual reasoning principles from the previous section form the heart
of the proof theory of Rtac. In this section, we describe the generic language
constructs and their soundness criteria.

From a language point of view, tactics operate on a single goal; however,
tactics can produce multiple goals, for example when proving P∧Q, it is common
to break the goal into two subgoals, one for P and one for Q. Further, while
these goals may start with the same context, further reasoning may lead them
to extend their contexts in different ways. In order to represent all of the goals
in a meaningful way, Rtac uses goal trees defined in Figure 4. All of the syntax
maps naturally to the corresponding semantic counter-parts.

On top of goal trees and the contexts from the previous section, we define
the two language constructs in Rtac: tactics and tactic continuations.

(Tactics) rtac , C → E → option (C × G)

(Tactic continuations) rtacK , C → G → option (C × G)

At the high level, the two constructs accept a context and a representation of
the goal—a single expression in the case of tactics and a full goal tree in the case



(Goal Trees) G ::= > | dEe | ∀τ.G | ∃τ.G | ∃τ = E .G | E → G | G ∧ G

tu
tv

J>KG , λdu dv.>
tu
tv

JdeeKG , λdu dv.
tu
tv

JeKProp du dv
tu
tv

Jg1 ∧ g2KG , λdu dv.
tu
tv

Jg1KG du dv ∧ tutv Jg2KG du dv
tu
tv

Je→ gKG , λdu dv.
tu
tv

JeKProp du dv → tu
tv

Jg2KG du dv
tu
tv

J∀τ .gKG , λdu dv. ∀x : τ, tutv·τ JgK
G du (dv · x)

tu
tv

J∃τ .gKG , λdu dv. ∃x : τ, tu·τtv
JgKG (du · x) dv

tu
tv

J∃τ=e.gKG , λdu dv. ∃x : τ, x = tu
tv

JeKτ ∧ tu·τtv
JgKG (du · x) dv

Fig. 4. Goal trees represent the global proof structure.

of tactic continuations—and produce a new context and a goal tree. The option
in the return type allows tactics to fail, which is convenient when a particular
reasoning step does not apply to the current goal. We discuss this in more detail
in Section 5.3.

An Rtac tactic (resp. tactic continuation) is sound if, when it succeeds, the
resulting goal tree is sufficient to prove the original goal (resp. goal tree) in
the resulting context and the resulting context is a consistent extension of the
original context. Mathematically5,

rtac sound tac ,

∀c e g
′ c′, tac c e = Some (c′, g′)→

c⇒ c′∧
Jc′KC `

(
cu
cv Jg′KG →c

cu
cv JeKProp

)
where c⇒ c′ states that c′ is a consistent extension of the context c at all levels.
For example,

c, ∀τ ⇒ c′,∀τ ↔ c⇒ c′ ∧ (c, ∀τ ) (c′,∀τ )

This stronger consistency definition is necessary when we need to escape from
under a potentially inconsistent context. For example, when we apply a tactic
under a universal quantifier, we shift the quantifier into the context and invoke
the tactic with the enlarged context. Suppose that the soundness theorem of
the tactic only guaranteed c,∀τ  c′,∀τ , in order for our tactic to be correct,
we would have to guarantee c  c′, but this does not follow. Informally, the
consistent evolution of the smaller context should follow, but we can not argue
this within Coq because we can not construct a value of type τ .

The soundness of tactics follows directly from the soundness of tactic con-
tinuations by using the denotation of goal trees rather than the denotation of
terms in the conclusion. Formally,

rtacK sound tac ,

∀c e g
′ c′, tac c g = Some (c′, g′)→

c⇒ c′∧
Jc′KC `

(
cu
cv Jg′KG →c

cu
cv JgKG

)
5 In this definition we avoid the complexities of ill-typed terms. In the code, the

soundness proof gets to assume that the context and goal are both well-typed.



Local Unification Variables The alternation of universal and existential
quantifiers in contexts leads to some complexities when manipulating unification
variables. As we mentioned previously, unification variables in MirrorCore
implicitly have a single, global scope. This choice is at odds with the potential
alternation of universally quantified variables and unification variables.

In Rtac we solve the scoping problem using the context. Unification variables
introduced in the context are only allowed to mention variables and unification
variables that are introduced below it. For example, in ‘c,∃τ=e’, e is only allowed
to mention variables variables and unification variables introduced by c.

This design choice comes with a deficiency when introducing multiple unifi-
cation variables. For example, if we wish to introduce multiple unification vari-
ables, we need to pick an order of those unification variables and the choice is
important because we can not instantiate an earlier unification variable using a
later one. While there can never be cycles, the order that we pick is significant.
Our solution is to introduce mutually recursive blocks of unification variables
simultaneously. The reasoning principles for these blocks are quite similar to the
reasoning principles that we presented in this section and the last, but there is
a bit more bookkeeping involved.

Goal Minimization Local unification variables do have a benefit for Rtac. In
particular, it allows us to precisely control the life-time of unification variables
which allows us to substitute instantiated unification variables and entirely re-
move them from the goal tree. For example, the following rules state how we
shift unification variables from the context into the goal.

Jc,∃tKC ` g ↔ JcKC ` ∃t, g and Jc,∃t= eKC ` g ↔ JcKC ` g[e]

where g[e] substitutes all occurrences to the top unification variable with the
expression e and renumbers the remaining unification variables appropriately.

In addition to substitution of unification variables, we can also drop hypothe-
ses and universal quantifiers on solved goals. For example,

Jc, eKC `> ↔ JcKC `> and Jc,∀tKC `> ↔ JcKC `>

and contract conjunctions of solved goals, e.g.

JcKC `> ∧ g ↔ JcKC ` g and JcKC ` g ∧ > ↔ JcKC ` g

5.3 The Core Tactics

With the specification and verification strategy for tactics fleshed out, we return
to the client-level. Figure 5 presents a subset of the core tactics that we im-
plemented for Rtac. While relatively small in number, the uniform interface of
these tactics makes it easy to combine these tactics into higher-level automation.
Further, the soundness proofs of tactics built from verified tactics is essentially
free. In this section we present the soundness theorems for several representative
tactics and show how they compose.



Search Tactics
IDTAC : rtac do nothing
FAIL : rtac fail immediately
REC : N→ (rtac → rtac) → rtac → rtac bounded recursion

SOLVE : rtac → rtac solve fully or fail
FIRST : list rtac → rtac first to succeed

AT_GOAL : (E → rtac) → rtac
THEN : rtac → rtacK → rtac sequencing
THENK : rtacK → rtacK → rtacK sequencing
ON_ALL : rtac → rtacK

ON_EACH : list rtac → rtacK
MINIFY : rtacK reduce the goal size

Reasoning Tactics
EAPPLY : lemma → rtac apply a lemma
INTRO : rtac introduce a quantifier

EEXISTS : rtac witness an existential
SIMPL : (E → E) → rtac compute in the goal

EASSUMPTION : rtac use an assumption

Fig. 5. Select Rtac tactics.

Select Soundness Theorems The soundness theorems for individual tactics are
almost completely type-directed. For example, the soundness theorem for the
REC tactic is the following:

REC sound : ∀n f t,
(∀x, rtac soundx→ rtac sound(f x))→ rtac sound t→ rtac sound(RECn f t)

Similarly, the soundness of the FIRST tactic—which allows clients to try a set of
tactics and take the first that succeeds—follows directly from the soundness of
the individual tactics.

The APPLY tactic is the work-horse of Rtac and exemplifies MirrorCore’s
separation of manipulation and meaning. The tactic is parameterized by a syn-
tactic representation of a lemma and attempts to apply it to the goal. Its sound-
ness is justified by the following theorem.

APPLY sound : ∀lem, JlemKlemma → rtac sound (APPLY lem)

where J−Klemma is the denotation function for lemmas which are defined as triples
containing the types of universally quantified variables, a list of premises and
the conclusion. The implementation of APPLY is quite complex; however, all of
the complexity is hidden behind the soundness of the tactic making it trivial for
clients to use APPLY.

AT_GOAL allows automation to inspect the goal before choosing what to do.
For example, recall the use of REC to iterate through the terms on each side
of the equality in Figure 1. Rather than picking an arbitrary recursion depth,
we can use AT_GOAL to inspect the goal and compute an adequate depth for



Def tac_even : rtac := REPEAT 10
(FIRST [ ASSUMPTION

| APPLY even_0_syn

| APPLY even_odd_syn

| APPLY odd_even_syn ]).

Thm tac_even_sound : rtac_sound tac_even.
apply REPEAT_sound.
apply FIRST_sound; breakForall.
− apply ASSUMPTION_sound.
− apply APPLY_sound; exact even_0.
− apply APPLY_sound; exact even_odd.
− apply APPLY_sound; exact odd_even.

Qed.
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Fig. 6. Simple tactic for proving Evenness and the effect of minimization on run-time.

the fixpoint. The soundness rule for AT_GOAL simply requires that the function
produces a sound tactic for any goal, i.e.

AT GOAL sound : ∀tac, (∀g, rtac sound (tac g))→ rtac sound (AT GOAL tac)

The MINIFY tactic continuation reduces the size of goals by substituting in-
stantiated unification variables and removing solved branches of the proof. While
we could have integrated it into all of the tactics, separating it modularizes the
proof. Further, it allows the client to batch several operations before performing
minimization thus amortizing the cost over more reasoning steps. A particularly
extreme instance of this arises when dealing with very large terms in the sub-
stitution. Figure 6 shows a simple tactic for proving Evenness reflectively. The
manual soundness proof is for presentation purposes only to demonstrate that
our rtac_derive_soundness_default tactic truely is purely syntax directed.

6 Extending Rtac: Exploiting Structure in Rewriting

Rtac allows users to develop goal-oriented automation with a tight coupling
between the code we run and the justification of its soundness. In many cases,
this is just what the doctor ordered; however, because Rtac is defined within
Coq’s logic, we can implement custom automation that inter-operates directly
with Rtac. In this section we present a custom Rtac tactic for setoid rewriting—
we will explain what this means in a moment. In addition to being anRtac tactic,
our setoid rewriter is parameterized by lemmas to rewrite with and tactics to
discharge the premises of the lemmas.

Disclaimer Writing custom tactics is an advanced topic that is still quite
difficult, though we are working on easing the process. The benefit of writing a
custom tactic is that we can customize the implementation to exploit additional
structure that is present in the problem domain.



Rewriting Formally, rewriting answers the question: “what term is equal to
e using a set of equational lemmas?” Setoid rewriting generalizes the use of
equality in this question to arbitrary relations. For example, the Fiat system for
deductive synthesis [20] is built around rewriting using refinement relations.

Our rewriter is inspired by Sozeau’s rewrite_strat tactic [42] and handles
similar features, including:

– General relations, including both non-reflexive and non-transitive ones,
– Rewriting in function arguments and under binders,
– Hint databases which store the lemmas to use in rewriting, and
– Discharging side-conditions using Rtac tactics.

The reflective implementation of our rewriter allows us to avoid explicitly con-
structing proof terms which, as we show in Section 7, results in substantial per-
formance improvements. In addition, exporting the rewriter as a tactic makes it
easy to integrate into larger reflective automation.

We start the section off with an explanation of the mechanism underlying
setoid rewriting using a simple example (Section 6.1). In Section 6.2 we show
how we exploit this structure to make the rewriter more effective. We conclude
by presenting the client-facing interface to the rewriter (Section 6.3).

6.1 Setoid Rewriting by Example

To demonstrate the rewriting process, consider the following example where we
rewrite by an inverse entailment relation (a), which is essentially “if”:(

P ∧ ∃x : N, Q(x+ 1)
)
a ?0

We are looking for a term to fill in ?0 that will make this goal provable. When
we are done we will find that ?0 can be ∃x : N,

(
P ∧Q(1+x)

)
and the entailment

will be provable. We will focus on bottom-up rewriting where we rewrite in the
sub-terms of an expression before attempting to rewrite the expression itself.

Proper Morphisms Rewriting bottom-up first requires getting to the leaves. To
do this we need to determine the relations to use when rewriting sub-terms to
ensure that the results fit into the proof. In our example problem, we are looking
for relations R1 and R2 such that we can combine the proofs of

P R1 ?1 and (∃x : N, Q (x+ 1)) R2 ?2

into a proof of
P ∧ ∃x : N, Q(x+ 1) a ?1∧?2

This information is carried by properness proofs such as the following:

Proper and if : Proper (a =⇒ a =⇒ a)∧

which means

∀a b c d, (a a b)→ (c a d)→ ((a ∧ c) a (b ∧ d))



This lemma tells us that if we use a for both R1 and R2, then we will be able to
combine the sub-proofs to construct the overall proof. With concrete relations
for R1 and R2, we can apply rewriting recursively to solve the goals and find
appropriate values for ?1 and ?2.

When the rewriter recurses to solve the first obligation (P a ?1) it finds
that there is no explicit proof about P and a. However, the reflexivity of the a
relation allows the rewriter to use P to instantiate ?1, solving the goal. While this
may seem obvious, this check is necessary to support rewriting by non-reflexive
relations since, for arbitrary relations, there may be no term related to P .

Rewriting on the right-hand side of the conjunction is a bit more interesting.
In this case, the head symbol is an existential quantifier, which is represented
using a symbol ∃N applied to an abstraction representing the body, i.e.

∃N(λx : N, Q(x+ 1))

At the highest level of syntax things are the same as above, we look up a proper-
ness proof for ∃N and entailment and find the following:

Proper exists if : Proper
(
(pointwiseN a) =⇒ a

)
∃N

which means
∀a b, (∀x, a x a b x)→ (∃x, a x) a (∃x, b x)

As above, the conclusion of the lemma exactly matches our goal, so we instantiate
?2 with ∃x, ?3 x and produce a new rewriting problem to solve ?3.

The problem gets a bit more interesting when we rewrite the body at the
pointwise relation. The definition of ‘pointwise relationN a’ makes it clear that
we can rewrite in the function body as long as the two bodies are related by
a when applied to the same x, so we will shift a universally quantified natural
number into our context and begin rewriting in the body.

Rewriting in the rest of the term is similar. The only complexity comes
from determining the appropriate morphism for Q. First, if we do not find a
morphism for Q, we can still rewrite Q (x + 1) into Q (x + 1) by the reflexivity
of a but this prevents us from rewriting the addition. The solution is to derive
Proper (= =⇒ a)Q by combining the fact that all Coq functions respect equality,
i.e. Proper (= =⇒ =)Q, and the reflexivity of a.

Rewriting on the Way Up Eventually, our rewriter will hit the bottom of the
term and begin coming back up. It is during this process that we make use of
the actual rewriting lemmas. For example, take applying the commutativity of
addition on x + 1. Our rewriter just solved the recursive relations stating that
x = x and 1 = 1 so we have a proof of x+1 = x+1. However, because equality is
transitive, we can perform more rewriting here. In particular, the commutativity
of addition justifies rewriting x+ 1 into 1 + x.

The new result logically fits into our system but the justification is a bit
strained. The recursive rewriting above already picked a value for the unification
variable that this sub-problem was solving. Noting this issue, we realize that we



should have appealed to transitivity before performing the recursive rewriting.
Doing this requires a bit of foresight since blindly applying transitivity could
yield in an unprovable goal if the relation is not also reflexive.

With the rewriting in the body completed, we continue to return upward
finding no additional rewrites until we get to the top of the goal. At this point,
we have proved the following:

P ∧ ∃x : N, Q(x+ 1) a P ∧ ∃x : N, Q(1 + x)

But we would like to continue rewriting on the left-hand side of the entailment.
This rewriting is justified by the fact that a is a transitive relation. Again sweep-
ing the need for foresight under the rug, we can assume that we wish to solve
this rewriting goal:

P ∧ ∃x : N, Q(1 + x) a ?′0

Here we can apply the following lemma, which justifies lifting the existential
quantifier over the conjunction:

∀a b, a ∧ (∃x : N, b x) a (∃x : N, a ∧ b x)

Note that a can not mention x.
After lifting the existential quantifier to the top, our rewriting is complete.

The key property to note from the example is that the only symbols that the
rewriter needed to interpret where the morphisms, e.g. respectful and pointwise.
All other reasoning was justified entirely by a combination of rewriting lemmas,
properness lemmas, and the reflexivity and transitivity of relations. Thus, like
Rtac, our rewriter is parametric in the domain.

6.2 Implementing the Rewriter

There are two opportunities to make a custom rewriter more efficient than one
implemented using Rtac primitives. First, rewriting tends to produce a lot of
unification variables as properness rules have two unification variables for every
function argument, only one of which will be solved when applying the theorem.
Our small example above would introduce at least 8 unification variables where
in reality none are strictly necessary. Second, rewriting needs to be clever about
when it appeals to transitivity.

Expressing the rewriter as a function with a richer type allows us to solve both
of these problems elegantly. Rather than representing the goal as a proposition
relating a unification variable to a known term, we can explicitly carry around
the known term and the relation and return the rewritten term. This insight
leads us to choose the following type for the rewriter

rewriter , C → E → R → option(C × E)

where R is the type of relations. The attentive reader will notice the similarity
to the type of tactics, which is even more apparent in the soundness criterion:

rewrite sound rw ,


∀c e e′ c′, rw c e r = Some (c′, e′)→
c⇒ c′∧
tu
tv Jc′KC ` (λdu dv.

tu·cu
tv·cv JeKt du dv JrKR tu·cu

tv·cv Je′Kt du dv)



where J−KR is the denotation of relations. As one would expect, the same rea-
soning principles for contexts apply when verifying the rewriter. By using this
representation, we are clearly reducing the number of unification variables since
invoking the rewriter no longer requires a unification variable at all.

This encoding also allows us to perform additional processing after our re-
cursive rewrites return. If we use unification variables to return results, we need
to ensure that we do not instantiate that unification variable until we are certain
that we have our final result. Therefore, when we make recursive calls, we would
need to generate fresh unification variables and track them. Communicating the
result directly solves this problem elegantly because the rewriter can inspect
the results of recursive calls before it constructs its result. The key to justifying
this manipulation is that, unlike Rtac, the soundness proof of the rewriter gets
a global view of the computation before it needs to provide a proof term. This
gives it the flexibility to apply, or not apply, transitivity based on the entire
execution of the function. That is, if multiple rewrites succeed, and the relation
is transitive, then the soundness proof uses transitivity to glue the results to-
gether. If only one succeeds, there is no need to use transitivity and the proof
from the recursive call is used. And if none succeed, and the relation is not re-
flexive then rewriting fails. It is important to note that this global view is purely
a verification-time artifact. It incurs no runtime overhead.

Another benefit of accepting the term directly is that the rewriter can perform
recursion on it directly. The core of the bottom-up rewriter handles the cases for
the five syntactic constructs of the expr language, of which only application and
abstraction are interesting. In the application case the rewriter accumulate the
list of arguments delaying all of its decisions until it reaches the head symbol. In
order to ensure that the rewriter can perform recursive calls on these sub-terms,
the rewriter pairs the terms with closures representing the recursive calls on
these sub-terms. This technique is reminiscent of hereditary substitutions and
makes it quite easy to satisfy Coq’s termination checker. Abstractions are the
only construct that is treated specially within the core rewriter. For abstractions,
we determine whether the relation is a pointwise relation and if so, we shift the
variable into the context and make a recursive call. Otherwise, we treat the
abstraction as an opaque symbol.

6.3 Instantiating the Rewriter

Figure 7 presents the types and helper functions exported by the rewriter. The
interface to the rewriter defines four types of functions: refl_dec, trans_dec,
properness, and rewriter. refl_dec (resp. trans_dec) returns true if the
given relation is reflexive (resp. transitive). properness encodes properness facts
and is keyed on an expression, e.g. d∧e, and a relation, e.g. a, and returns
suitable relations for each of the arguments, e.g. the list [a,a]. Ltac’s setoid
rewriter implements these three features using Coq’s typeclass mechanism and
these functions are essentially reified typeclass resolution functions. Each one of



Types

refl dec , R→ bool is relation reflexive?

trans dec , R→ bool is relation transitive?

properness , E → R → listR get relation for E ending in R

rewriter , C → E → R → option (C × E) perform rewrites

Builders

do proper : list (E ×R)→ properness

rewrite db : list (rw lemma× rtacK)→ rewriter

rw repeat : refl dec→ trans dec→ N→ rewriter→ rewriter

rw pre simplify : (E → E)→ rewriter→ rewriter

rw post simplify : (E → E)→ rewriter→ rewriter

bottom up : refl dec→ trans dec→ properness→ rewriter→ rewriter

setoid rewrite : R→ rewriter→ rtac

Fig. 7. The interface to the rewriter.

these types has a corresponding soundness property similar to rewrite_sound.

refl dec sound f , ∀r, fr = true→ Reflexive JRKR

trans dec sound f , ∀r, fr = true→ Transitive JRKR

properness sound f , ∀e r rs, f e r = Some rs→ Proper Jrs =⇒ rKR ε
εJeKt

where rs =⇒ r builds a respectful morphism from rs. For example, [r1, r2] =⇒ r
equals r1 =⇒ r2 =⇒ r. The rewriter type, which we discussed in detail in
Section 6.2 is what actually performs rewriting.

The helper functions provide simple ways to construct sound values of these
types from simpler pieces. As with the Rtac tactics, their soundness theorems are
essentially all type-directed. For example, do_proper constructs a properness

from a list of expressions and relations where each expression is proper with
respect to the relation. Formally,

do proper sound : ∀er,
Forall(λ(e, r).Proper JrKR ε

εJeKet) er → properness sound (do proper er)

where et represents the type of e. The current implementation looks up the
expression and relation in the list and returns a list of the relations that the
arguments must respect; however, more sophisticated implementations could use
discrimination trees keyed on either the expression or the relation.

rewrite_db is similar in many regards to APPLY in Rtac. It takes a list of
rewriting lemmas (rw_lemma), which are specialized lemmas that have conclu-
sions of the type E ×R×E , and tactic continuations used to solve the premises
and builds a rewriter that tries to rewrite with each lemma sequentially. The
soundness theorem is similar to the soundness of do_proper.

rewrite db sound : ∀r,
Forall(λ(l, t).JlKrw lemma ∧ rtacK sound t) r → rewrite sound (rewrite db r)



The rw_pre_simplify and rw_post_simplify combinators require that the
function argument produces a term that is equal to the input term and are useful
when we need to reduce terms to put them back into a normal form. Finally,
the setoid rewrite tactic converts a rewriter into an Rtac tactic. Due to the
nature of rewriting in the goal, the relation to rewrite by must be a sub-relation
of reverse implication. Formally,

setoid rewrite sound : ∀r w,
(JrKR ⊆ →)→ rewrite soundw → rtac sound (setoid rewrite r w)

7 Case Studies

Using Rtac, we have built several pieces of automation that perform interesting
reasoning and have completely automatic proofs. Beyond these small case stud-
ies, Rtac has also been used for automating a larger program logic [22] and we
are currently using it to verify Java programs with Charge! [7].

We performed our evaluation on a 2.7Ghz Core i7 running Linux and Coq
8.5rc1. Our benchmarks compare our reflective automation to similar Ltac au-
tomation. Unless otherwise noted, both implementations use the same algorithms
and the Rtac implementations use only the generic tactics. We benchmark two
phases: proof generation and proof checking (notated by -Qed). In the Ltac im-
plementations, proof generation is the time it takes to interpret the tactics and
construct the proof object, and the Qed time is the time it takes Coq to check
the final proof. Note that when using Ltac, the proof checking does not include
the search necessary to find the proof. In the Rtac implementation, proof gener-
ation counts the cost to construct the syntactic representation of the goal and
perform the computation on Coq’s byte-code virtual machine [27]. During Qed
time the syntactic representation is type-checked, its denotation is computed
and checked to be equal to the proposition that needs to be checked, and the
tactic is re-executed to ensure that the computation is correct.

Monoidal Equivalence Our first case study is the monoidal equivalence checker
from Section 3. The graph in Figure 8 shows how the Rtac implementation scales
compared to the Ltac implementation. Despite the fact that both the Rtac and
the Ltac automation perform exactly the same search, the Rtac implementation
scales significantly better than the Ltac implementation. The break-even point–
where Rtac and Ltac are equally fast—is at roughly 8 terms where the proof size
begins to increase dramatically compared to the problem size.

Even the Qed for Rtac becomes faster than the Qed for Ltac, though this
happens only for much larger problems. The intersection point for the Qed lines
corresponds to the size of the problem where re-performing the entire search and
type checking the syntactic problem becomes faster than checking just the final
proof term. Memoizing the correct choices made during execution of the tactic
in the style of Cybele [16] could further decrease Qed time. However, doing this
would require embedding the simulation into the final proof.
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Fig. 8. Performance of (a) monoidal equivalence checking, and (b) a simple imperative
program verifier.

Post-condition Verification We developed a simple program verifier in Rtac for a
trivial imperative programming language, which includes assignments, addition,
and sequencing. All of the automation is based heavily on a simple Ltac imple-
mentation. For example, the lemmas that we reify are the same lemmas that
are applied by the Ltac implementation. We built the automation incrementally,
first automating only sequencing and copies and later integrating handling of
simple reasoning about addition.

The graph in Figure 8 compares the performance between pure Ltac (Ltac),
pure Rtac (Rtac), and a hybrid of Ltac and Rtac (Ltac+Rtac) implementation.
The problem instances increment each of n variables with the post-condition
stating that each variable has been incremented. The x axis shows the number
of variables (which is directly related to both the size of the program and the
pre- and post-conditions) and the y axis is the verification time in seconds.
There are two sub-problems in the verifier: first, the post-condition needs to be
computed, and second, the entailment between the computed post-condition and
the stated post-condition is checked. The blue (Ltac) line automates both sub-
problems in Ltac. Converting the post-condition calculation tactic to Rtac and
leaving the entailment checking to Ltac already gets us a substantial performance
improvement for larger problems, e.g. a 31x reduction in verification time for 26
variables. The red dotted line (Ltac post) shows the amount of that time that is
spent checking the final entailment in Ltac. Converting the entailment checker
into a reflective procedure results in another 2.6x speedup bringing the tactic
to the green line at the bottom of the graph. Overall, the translation from pure
Ltac to pure Rtac leads to an almost 84x reduction in the total verification time
from 151 seconds to less than 2. In addition the performance improvement on
sub-problems, solving the entire verification with a single reflective tactic avoids
the need to leave the syntactic representation which is often accounts for a large
portion of the time in reflective automation [34].



For this simple language, the entire translation from Ltac to Rtac took a
little over a day6. We encountered three main stumbling blocks in our develop-
ment. First, the meta-theory for our language is built on the Charge! library [8]
which relies heavily on type-classes which are not automatically handled by Mir-
rorCore and Rtac. Second, solving the entailment requires reasoning about
arithmetic. In Ltac, we can use Coq’s built-in omega tactic which discharges
obligations in Presburger arithmetic. Since we are building our automation re-
flectively, we lose access to generate-and-check-style automation. We solve this
problem by writing custom Rtac to discharge the regular form of the goals that
we need for this example, but more robust automation is clearly preferable and
would likely benefit many clients. Finally, reasoning steps in Ltac rely on Coq’s
reduction mechanism. Since computational reflection treats symbols opaquely
by default we needed to write reflective unfolders which replace symbols with
their implementations. This is currently a quite manual task, though we believe
that it could be simplified with some additional development.

For exposition purposes we have purposefully kept the automation simple.
Adding support for additional language constructs is quite simple assuming they
have good reasoning principles. In general, we reify the lemma and add new arms
to the FIRST tactic to apply them. To extend the automation to a more realistic
language we need to adapt the language and the automation to support heap
operations and a rich separation logic. Our initial work on this suggests that
this extension crucially relies on a good separation logic entailment checker. We
believe that our monoidal equivalence checker is a first step in this direction, but
more work is necessary to handle abstract representation predicates and more
clever solving of unification variables that represent frame conditions.

Quantifier Pulling with Rewriting To demonstrate the rewriter, we use it to lift
existential quantifiers over conjunctions as we did in Section 6.1. Lifting of this
sort is a common operation when verifying interesting programs since existential
quantifiers are often buried inside representation predicates.

To perform lifting, we instantiate the rewriter using the definitions in Fig-
ure 9. The core traversal is quant_pull which uses the bottom-up traversal.
When the head symbol is a conjunction the recursive rewrites pull quantifiers to
the top, which produces a formula similar to: (∃x : N, Px)∧(∃y : N,∃z : N, Q y z).
To lift all of the quantifiers from both sides of the conjunct, pull_all_quant
repeatedly performs rewriting to lift the existentials over the conjunct. This
rewriting also uses the bottom-up rewriter, but only uses the properness lem-
mas that allow the rewriter to descend into the body of existential quantifiers
(get_proper_only_all_ex) to avoid descending into terms that we know do
not contain quantifiers.

Figure 9 compares our reflective rewriter with two non-reflective strategies
on a problem where 10 existential quantifiers are lifted from the leaves of a
tree of conjuncts. The Ltac rewriter uses repeat setoid_rewrite since Coq’s

6 The original implementation specialized many lemmas to avoid polymorphism, which
is not handled automatically by MirrorCore at this time.



Def the_rewrites : rewriter :=
rw_post_simplify simple_reduce

(rw_pre_simplify beta (rewrite_db the_lemmas)).

Def pull_all_quant : rewriter :=
rw_repeat is_refl is_trans 300

(bottom_up is_refl is_trans

get_proper_only_all_ex

the_rewrites).

Def quant_pull : rewriter :=
bottom_up is_refl is_trans

get_proper pull_all_quant.

Def qp_tac : rtac :=
setoid_rewrite quant_pull. 0 50 100 150 200 250
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Fig. 9. Tasking the rewriter to lift quantifiers; and its scaling properties.

built-in autorewrite tactic does not rewrite under binders which is necessary
to complete the problem. rewrite_strat uses Sozeau’s new rewriter [42] which
is more customizable and produces better proof terms. Even on small instances,
the reflective rewriter is faster than both Ltac and rewrite_strat, e.g. at 16
conjuncts the reflective implementation is 13x faster than the strategy rewriter
and 42x faster than the Ltac implementation. The performance improvement is
due to the large proof terms that setoid rewriting requires.

8 Related & Future Work

The idea of computational reflection has been around since Nuprl [5,30] and also
arose later in LEGO [40]. Besson [9] first demonstrated the ideas in Coq reason-
ing about Peano arithmetic. Since then there have been a variety of procedures
that use computational reflection. Braibant’s AAC tactics [12] perform reflective
reasoning on associative and commutative structures such as rings. Lescuyer [33]
developed a simple, reflective, SMT solver in Coq. There has also been work on
reflectively checking proof traces produced by external tools in Coq [3,10]. The
development of powerful reflective tactics has been facilitated by fast reduction
mechanisms in Coq [11,27]. Our work tackles the problem of making computa-
tional reflection more accessible to ordinary users of Coq by making it easier to
write and prove reflective automation sound, which is the main bottleneck in
using computational reflection in practice.

Our work builds on the ideas for computational reflection developed by
Malecha et al [34]. We extend that work by supporting a richer term and type
language that is capable of representing higher-order problems and problems



with local quantification7 using a formalized version of Garillot’s representation
of simple types in type theory [24]. Our work differs from Garillot’s by applying
the representation to build reusable reflective automation. Some of the technical
content in this paper is expanded in Malecha’s dissertation [37].

Work by Keller describes an embedding of HOL lite in Coq [28] in order to
transfer HOL proofs to Coq. Our representation in MirrorCore is very close to
their work since, like MirrorCore, HOL lite does not support dependent types.
Their work even discusses some of the challenges in compressing the terms that
they import. For us, computational reflection solves the problem of large proof
terms, though we did have to tune our representation to shrink proof terms.
Separately, Fallenstein and Kumar [23] have applied reflection in HOL focusing
on building self-evolving systems using logics based on large cardinals.

Recent work [21,44] has built reflective tactics in the Agda proof assistant.
Unlike our work, this work axiomatizes the denotation function for syntax and
relies on these axioms to prove the soundness of tactics. They argue that this
axiomatization is reasonable by restricting it to only reduce on values in some
cases which is sufficient for computational reflection. The reason for axiomatizing
the denotation function is to avoid the overwhelming complexity of embedding
a language as rich as dependent type theory within itself [4,13,19,38,39,45].

Kokke and Swierstra [31] have developed an implementation of auto in Agda
using Agda’s support for computational reflection. Their work also includes a
reflective implementation of unification similar to our own. Their implementation
abstracts over the search strategy allowing them to support heuristic search
strategies, e.g. breadth- and depth-first search. Developing their procedure using
only Rtac would be difficult because Rtac’s design follows Ltac’s model and only
supports depth-first search. However, we can still implement a custom tactic
similar to our rewriting tactic that interfaces with Rtac.

Beyond computational reflection, there has been a growing body of work
on proof engineering both in Coq and other proof assistants. Ziliani developed
Mtac [46], a proof-generating tactic language that manipulates proofs explicitly.
While it does generate proofs and thus is not truly reflective, it does provide
a cleaner way to develop proofs. Prior to Mtac, Gonthier [26] demonstrated
how to use Coq’s canonical structures to approximate disciplined proof search.
Canonical structures are the workhorse of automation in the Ssreflect tactic
library [25] which uses them as “small scale reflection.” Our approach is based
on large-scale computational reflection, seeking to integrate reflective automation
to build automation capable of combining many steps of reasoning.

Escaping some of the complexity of dependent type theories, Stampoulis’s
VeriML [43] provides a way to write verified tactics within a simpler type theory.
Like Rtac, VeriML tactics are verified once meaning that their results do not
need to be checked each time. VeriML is an entirely new proof assistant with
accompanying meta-theory. Our implementation of Rtac is built directly within
Coq and is being used alongside Coq’s rich dependent type theory.

7 Malecha’s work supports local quantification only in separation logic formulae and
relies crucially on the type of separation logic formulae to be inhabited.



Future Work The primary limitation in MirrorCore is the fact that the term
representation supports only simple types. For the time being we have been able
to get around this limitation by using meta-level parameterization to represent,
and reason about, type constructors, polymorphism, and dependent types. En-
riching MirrorCore to support these features in a first-class way would make
it easier to write generic automation that can reason about these features, for
example applying polymorphic lemmas. The primary limitation to doing this
comes from the need to have decidable type checking for the term language.
With simple types, decidable equality is simply syntactic equality, but when the
type language contains functions type checking requires reduction.

Currently, the main cost of switching to reflective tactics is the loss of power-
ful tactics such as omega and psatz. While pieces of these tactics are reflective,
integrating them into larger developments requires that they use extensible rep-
resentations. Porting these tactics to work on MirrorCore would be a step
towards making them usable within Rtac. Unfortunately, many of these plugins
rely on interesting OCaml programs to do the proof search and then emit wit-
nesses that are checked reflectively. Accommodating this kind of computation
within Rtac would require native support for invoking external procedures and
reconstructing the results in Coq a la Claret’s work [16].

9 Conclusion

We built a framework for easily building efficient automation in Coq using com-
putational reflection. Our framework consists of MirrorCore, an extensible
embedding of the simply-typed λ-calculus inside of Coq, which we use as our
core syntactic representation. On top of MirrorCore, we built the reflective
tactic language Rtac. Rtac is modeled on Ltac which makes it easy to port simple
Ltac tactics directly to Rtac. Our case studies show that even näıve Rtac imple-
mentations can be nearly 2 orders of magnitude faster than their corresponding
Ltac tactics. To demonstrate the extensible nature of Rtac, we built a bottom-up
setoid rewriter capable of inter-operating with Rtac tactics while retaining the
ability to use custom data types and a global view of computation for efficiency.

The combination of MirrorCore and Rtac opens the doors to larger for-
malisms within dependent type theories that need to construct proof objects.
Rtac allows us to combine individual reflective tactics into higher-level automa-
tion which allows us to further amortize the reification overhead across more
reasoning steps. We believe that fully reflective automation will enable more
and larger applications of the rich program logics currently being developed.
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27. B. Grégoire and X. Leroy. A Compiled Implementation of Strong Reduction. In
Proc. ICFP’02, ICFP ’02, pages 235–246. ACM, 2002.

28. C. Keller and B. Werner. Importing HOL Light into Coq. In Interactive Theorem
Proving, volume 6172 of LNCS, pages 307–322. Springer Berlin Heidelberg, 2010.

29. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. In Proc. SOSP, pages 207–220. ACM, 2009.

30. T. B. Knoblock and R. L. Constable. Formalized metareasoning in type theory.
Technical report, Cornell University, 1986.

31. P. Kokke and W. Swierstra. Auto in Agda. In Mathematics of Program Construc-
tion, volume 9129 of LNCS, pages 276–301. Springer International Publishing,
2015.

32. X. Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In 33rd ACM symposium on Principles of Programming
Languages, pages 42–54. ACM Press, 2006.
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