
A More Precise Security Type System
for Dynamic Security Tests

Gregory Malecha Stephen Chong
School of Engineering and Applied Sciences

Harvard University
gmalecha@cs.harvard.edu chong@seas.harvard.edu

Abstract
The move toward publically available services that store private
information has increased the importance of tracking informa-
tion flow in applications. For example, network systems that store
credit-card transactions and medical records must be assured to
maintain the confidentiality and integrity of this information. One
way to ensure this is to use a language that supports static rea-
soning about information flow in the type system. While useful in
practice, current type systems for checking information flow are
imprecise, unnecessarily rejecting safe programs. This annoys pro-
grammers and often results in increased code complexity in order
to work around these artificial limitations. In this work, we present
a new type system for statically checking information flow prop-
erties of imperative programs with exceptions. Our key insight is
to propagate a context of exception handlers and check exceptions
at the throw point rather than propagating exceptions outward and
checking them at the catch sites. We prove that our type system
guarantees the standard non-interference condition and that it is
strictly more permissive than the existing type system for Jif, a lan-
guage that extends the Java type system to reason about information
flow.

1. Introduction
Modern software platforms are becoming increasingly distributed
and public. Both of these properties lead to systems that are more
vulnerable to breaches in the integrity and confidentiality of infor-
mation that they are entrusted to protect. Software bugs place both
of these properties at risk, but even seemingly correct systems can
unintentionally leak information with potentially disastrous conse-
quences. For example, SQL injection attacks [Su and Wassermann
2006] and cross-site scripting (XSS) attacks [Endler 2002] are two
of the most prevalent vulnerabilities on the Internet today [van der
Stock et al. 2007] and both can be viewed as failures to properly en-
force the flow of information [Dalton et al. 2007; Vogt et al. 2007].
In addition to addressing these problems, information flow analy-
ses have been applied to help reason about a variety of other prob-
lems such as distributed systems development [Liu et al. 2009] and
client-server application synthesis [Chong et al. 2007a,b].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS ’10 Toronto, Canada
Copyright c© 2010 ACM 978-1-60558-827-8. . . $10.00

Information flow bugs are difficult to detect because, unlike
most types of correctness bugs, they often require specially crafted,
uncommon input. Even more formal methods (e.g., Cadar, Cristian
and Dunbar, Daniel and Engler, Dawson [2008]; Chlipala et al.
[2009]) will often fail to catch information flow problems because
specifications must explicitly state these security properties which
are often overlooked or too verbose to specify for large systems.
Even when specifications are written with security in mind, the
burden of manually proving these properties is often too high and
the brittleness of proofs in many systems makes refactoring and
evolving code difficult; we require lighter-weight, more automatic,
approaches for checking these properties.

While arbitrary correctness properties are difficult to reason
about, programming language research has contributed a variety
of systems for reasoning about specialized properties of code. In
the realm of security, much work has gone into statically certifying
non-interference [Goguen and Meseguer 1982] properties for cal-
culi (e.g. Heintze and Riecke [1998]; Tse and Zdancewic [2007])
as well as dynamic monitoring of program execution to enforce in-
formation flow requirements (e.g. Askarov and Sabelfeld [2009]).
Many of these analyses use type-oriented techniques originally de-
veloped by Volpano et al. [1996] to achieve modular and efficient
checking. Researchers have capitalized on these features adapt-
ing the technique to several mainstream languages, including Java
[Myers 1999] and OCaml [Pottier and Simonet 2003].

Jif [Myers 1999] is a programming language that extends the
Java type system and run-time environment with support for rea-
soning about information flow. Unlike smaller calculi, Jif supports a
considerable chunk of the standard Java language including classes,
inheritance, and exceptions. Jif also provides run-time inspection of
the security policy, a feature that is necessary for writing realistic
programs that are parametric with respect to the run-time policy
and support run-time policy modification. For example, many ap-
plications that deal with users, such as wikis and shared calendars,
require a way to check whether run-time content, such as a web
page or calendar event, should be accessible to a particular user.

The complexity of dynamic policy inspection coupled with non-
local control flow leads to an imprecise and unnecessarily conser-
vative analysis in Jif. Examples of this imprecision have been en-
countered in real developments in previous work (e.g., Clarkson
et al. [2008]; Hicks et al. [2006]). This is a major impediment to
development in Jif because secure Java code must be rewritten to
work in Jif. In addition, the tricks required to convince the existing
type system that code is secure obscure the code’s meaning making
it difficult to understand and maintain.

For example, consider the following Jif code that uses a run-
time test to determine if information can flow from variable y to
variable z.

1 int{∗p} y = ...; /∗ y protected by label p ∗/
2 int{∗q} z = 0; /∗ z protected by label q ∗/
3

4 try {
5 if (p v q) {
6 /∗ information can flow from y to z ∗/
7 if (y > 0) throw new Exception();
8 }
9 }

10 catch (Exception e) {
11 z = 1;
12 }

The program begins by defining two variables, y and z, with dif-
ferent protection levels. We assume that p and q are variables that
contain protection levels, and the protection level of y and z are the
contents of p and q respectively. The program then checks whether
the run-time policy permits information to flow from protection
level p to protection level q, with the dynamic test p v q. If in-
formation flow is allowed, the program performs a test on the value
of y and raises an exception if it is greater than 0. The catch handler
for the exception assigns the constant 1 to variable z. Thus infor-
mation may flow from variable y to variable z, since the assignment
to z depends on the value of y.

This example program is secure: information is only allowed to
flow from y to z when it is permitted by the run-time security policy,
i.e. when p v q. However, the Jif compiler rejects this program
because the assignment to z in line 11 occurs outside the lexical
scope of the dynamic security test p v q on line 5; the compiler
has forgotten that the run-time check ensures that information is
allowed to flow from p to q. In this work, we present a new type
system that permits this information flow.

Outline and Contributions
We begin with background on information flow research including
how security policies are described and what it means to be secure
(Section 2). We then introduce LimpL, a loop-less imperative lan-
guage that we will use to study information flow (Section 3). Then
we adapt the Jif type system for LimpL (Section 4.1) to serve as a
basis for comparison. We then cover our primary contributions:

• We define a new typing relation for LimpL that propagates
information about exception handlers rather than exceptions
(Section 4.2).

• We show that our type system guarantees a standard non-
interference condition for information flow (Section 5.2).

• We show that our type system is strictly more permissive than
the Jif-style type system for LimpL (Section 5.3).

• We show how our type system can be cleanly extended to
facilitate a hierarchy of exceptions (Section 6).

We conclude with a discussion of the insights of our new type
system (Section 7) before considering related work (Section 7.1),
and future directions (Section 8).

2. Background
In this section we cover the basics of information flow that are
necessary to understand our system. We begin with a brief discus-
sion of the methods for stating policies before formally defining the
main semantic condition that we are interested in: non-interference.

For our purposes, security policies are join semi-lattices of
security levels [Denning and Denning 1977]. Let L be the set of
security levels, andvL the partial order overL. We use Φ to denote

the security policy.

Security policy Φ = (L,vL)

Security levels L define the protection levels in the program and
partial order vL defines permitted information can flow between
security levels. That is, information is allowed to flow from level
p to level q if and only if p vL q. We use tL to denote the join
operator. Note that for any two security levels p and q, there exists
p tL q ∈ L that is a least upper bound of both p and q. We further
assume that there is a distinguished bottom security level ⊥ ∈ L,
such that ⊥ vL p for all p ∈ L.

We note that this model of security levels can be used to reason
about both confidentiality and integrity, and our results are applica-
ble to rich security policy models, such as the decentralized label
model [Myers and Liskov 1997].

In the literature, the standard notion of information security en-
forcement for programs is embodied in non-interference [Goguen
and Meseguer 1982]. A system satisfies non-interference if low se-
curity outputs of the system are independent of high-security in-
puts. Intuitively, non-interference requires that information does
not flow from high-security inputs to low-security outputs. Many
variants and extensions of non-interference have been developed
for addressing different types of information channels, such as ter-
mination and timing channels (see Sabelfeld and Myers [2003] for
an overview). In this paper we focus only on basic non-interference
since the core problems that we address arise even in this simplified
context.

To state non-interference more formally, we first need to define
some symbols and judgments. Since we will be reasoning about
an imperative language we will model information flows through
mutable stores σ. A store is a map from variables to values. We
write σ[x 7→ v] for the store that maps variable x to value v, and
otherwise behaves like store σ. We assume that each security level
o ∈ L is able to observe the values of some subset of variables
in the store; this subset is determined by a variable environment
Γ. We write Γ ` σ1 ≈o σ2 to mean that for all variables x that
security level o may observe, we have σ1(x) = σ2(x). Moreover,
we say “Γ protects x at level o” if variable x is not observable at
any security level less restrictive than security level o.

To reason about the execution of a program s, we use the tran-
sitive closure of the small step operational semantics, Φ ` s, σ →∗
v, σ′. This states that under security policy Φ and with store σ, the
program s evaluates to value v and store σ′. In subsequent sections
we will make both of these definitions more precise.

Based on the above definitions, we can formally state the non-
interference property that we will be interested in:

Definition (Non-interference). Program s satisfies non-interference
with respect to level o under variable environment Γ if for all se-
curity policies Φ, for all stores σ, and for all variables h such
that Γ protects h at level o′ and o′ 6vL o, and for all values
v1, v2 of the same type, if Φ ` s, σ[h 7→ v1] →∗ v′1, σ′1 and
Φ ` s, σ[h 7→ v2]→∗ v′2, σ′2 then Γ ` σ′1 ≈o σ

′
2 and v′1 = v′2.

This definition states that a program satisfies non-interference
if an attacker with security level o, who can observe the values of
some variables in the final store, can not learn anything about the
high security input.

3. The Language
In this section we present LimpL, an imperative calculus for rea-
soning about security. LimpL is based on IMP [Winskel 1993], but
omits loops and adds named exceptions and first-class security lev-
els. This choice of language constructs allows us to focus on the
key differences between our type system and Jif’s. Formally, the

Φ ` e, σ ⇓ v Expression Evaluation Semantics

E-VALUE
Φ ` v, σ ⇓ v

x 7→ v ∈ σ
E-VAR

Φ ` x, σ ⇓ v

Φ ` ej , σ ⇓ ij i = Ji1 ⊕ i2K
E-OP

Φ ` e1 ⊕ e2, σ ⇓ i

Φ = (L,vL)

Φ ` ei, σ ⇓ oi

o1 vL o2 =⇒ i = 1

o1 6vL o2 =⇒ i = 0
E-FLOWS

Φ ` e1 v e2, σ ⇓ i

Figure 1. LimpL expression evaluation semantics.

language is described by the following BNF:

Integers i ∈ Z
Variables x, y ∈ Countably infinite set of names
Exceptions C,D ∈ Finite set of names
Security Level o ∈ L
Expressions e ::= x | i | o | e⊕ e | e v e
Statements s ::= skip | x := e | s; s

| if e then s else s
| throw (C, e)
| try s catch (C x) s
| try s finally s

Metavariables x and y range over the set of program variables,
which are drawn from a countably infinite set of strings. Stores
map variables to integers and security levels. Expressions in the
language, ranged over by e, include variables, integers i, security
levels o, and pure binary operations on integers e ⊕ e. In addition,
the language includes a dynamic security level test e1 v e2, which
evaluates e1 and e2 to security levels o1 and o2, and tests whether
the run-time security policy allows information to flow from o1 to
o2.

In addition to the standard statement constructs skip, assign-
ment, sequence, and if statements, LimpL supports simple named
exceptions. Metavariables C and D range over exception names,
and exceptions can carry a single integer value. The statement
throw (C, e) throws the exception named C, and the associ-
ated value is the result of evaluating expression e. The construct
try s1 catch (C x) s2 evaluates s1, and if s1 throws exception C
with associated value v, then it executes s2 with variable x bound
to v. The construct try s1 finally s2 evaluates s1, and, regardless
of whether s1 terminates normally or exceptionally, evaluates s2.

3.1 Semantics
The operational semantics of LimpL are based on the operational
semantics of IMP extended with exceptions and omitting while
loops. Values in LimpL are broken into two categories: expression
values and statement values. We use metavariable v to range over
both of these categories; it will be clear from the context whether
an expression or statement value is intended.

Expression Values v ::= i | o
Statement Values v ::= skip | throw (C, v)

Expression values are either integers or security levels. Note that
we are treating exception names as second-class so they are not val-
ues. Statement values include skip, which corresponds to normal
termination of a statement, and throw (C, v), which corresponds
to exceptional termination with the exception name C carrying the
expression value v.

Since expressions have very simple semantics that don’t include
side-effects, we use a big-step operational semantics to define them
while using a small-step operational semantics for statements. The
LimpL evaluation relations have the following forms:

Expression Evaluation Φ ` e, σ ⇓ v
Statement Evaluation Φ ` s, σ → s′, σ′

Both evaluation relations are parameterized by the run-time secu-
rity policy Φ. It should be noted that, unlike in Jif, Φ can not change
at run time. We make this simplifying assumption because allowing
the policy to change complicates the definition of non-interference
in a way that should be orthogonal to the aspects that we are consid-
ering. Both relations are parameterized by store σ, which we treat
as a map from variables to values.

The semantics of expressions are presented in Figure 1. Values
reduce to themselves and variables reduce to the value that the
store assigns to them. We leave the set of binary operators abstract,
requiring only that they are restricted to integer arguments and
return values and are eager in both arguments, i.e., there is no
short-circuit evaluation. We distinguish the flows binary operator
(v) which consults the run-time security policy Φ, returning 1 if
the flow is permitted and 0 if it is not.

Figure 2 gives the small-step operational semantics for LimpL
statements. The semantics of assignment, sequence, and condition-
als are standard. We describe the semantics of exceptions in more
detail. Sequences beginning with a throw (C, v) absorb the next
statement (E-SEQTHROW). Statement values that are throws are
consumed at catch blocks reducing to the catch handler if the
type of the exception matches the guard (E-CATCHCATCH). To
void variable shadowing, we enforce that the names of variables
bound in a catch block are disjoint from the domain of σ; we en-
code this implicitly with]. If the exception name does not match
the guard or the body results in a skip, the handler is ignored and
body result is propagated (E-CATCHPASS). The finally construct
is used to specify a statement that should execute regardless of
whether or not an exception is thrown in the body. We describe this
by stepping the body to a value, and then reducing the try...finally
construct to a sequence of the finally statement and the value (E-
FINALLY). Thus, if the finally block terminates normally the result
is the result of the body and if the finally block terminates with an
exception, then the value of the body is ignored and the exception
is propagated.

4. Typing Information Flow
In this section we consider two type systems for checking informa-
tion flow. First, we adapt the type system of Jif to LimpL, and then
present our modified type system for the same language, highlight-
ing the differences between out type system and Jif’s.

Fundamentally, information flow tracks the security level of ex-
pressions and statements. The security level of an expression value
is the least upper-bound of the security levels of all of the val-
ues that contributed to its construction. For statements, the security
level is more subtle: the security level of a statement is an upper-
bound on the information that may be gained by knowing whether
the statement executes.

4.1 Type Checking á la Jif
The Jif type system was first published in Myers’ PhD thesis [My-
ers 1999]. Since then the Jif language has undergone several sim-
plifications [Chong and Myers 2006], though the spirit of the type
system has remained mostly unchanged. At a high-level, Jif typing
rules have a computational nature where the type of a term is built
bottom-up by combining the types of subterms. We adapt the Jif
type system for LimpL, preserving the computational nature. Both
this adapted type system and our type system (presented in the next

Φ ` s, σ → s′, σ′ Statement Evaluation Semantics

Φ ` e, σ ⇓ v σ′ = σ[x 7→ v]
E-ASSIGN

Φ ` x := e, σ → skip, σ′
Φ ` e, σ ⇓ v e 6= v

E-THROW
Φ ` throw (C, e), σ → throw (C, v), σ

Φ ` s1, σ → s′1, σ
′

E-SEQSTEP
Φ ` s1; s2, σ → s′1; s2, σ

′

E-SEQSKIP
Φ ` skip; s2, σ → s2, σ

Φ ` e, σ ⇓ v
E-SEQTHROW

Φ ` throw (C, v); s2, σ → throw (C, v), σ

Φ ` e, σ ⇓ i
i ∈ Z

i 6= 0 =⇒ s = s1

i = 0 =⇒ s = s2 E-IF
Φ ` if e then s1 else s2 → s, σ

Φ ` s, σ → s′, σ′
E-CATCHSTEP

Φ ` try s catch (C x) sc, σ → try s′ catch (C x) sc, σ
′

E-CATCHCATCH
Φ ` try throw (C, v) catch (C x) sc, σ → sc, σ] {x 7→ v}

v 6= throw (C, v′)
E-CATCHPASS

Φ ` try v catch (C x) sc, σ → v, σ′

Φ ` s, σ → s′, σ′
E-FINALLYSTEP

Φ ` try sfinally sc, σ → try s′ finally sc, σ
′ E-FINALLY

Φ ` try v finally sc, σ → sc; v, σ

Figure 2. LimpL statement evaluation semantics.

section) have the same structure of types.

Raw Types τ ::= int | level
Labels l,m ::= o | *x | l t l
Labeled Types T ::= τ{l}

Raw types include integers and security levels. A labeled type is a
pair of a raw type and a security label. A security label is either a
security level o, a dynamic security level *x, or the symbolic join
of two security labels l1 t l2. Dynamic security label *x refers
to the security level stored in variable x. For example, the type
int{*x} is the type of integer values protected by the security
level stored in the variable x. A dynamic security level is a simple
kind of dependent type. The type system will ensure that variables
that store security levels are immutable, that is, they will not be
modified during the execution of the program. This restriction is
analogous the requirement in Jif that any label variable is declared
final, and is needed for soundness of the type system.

A symbolic join l1 t l2 represents a security level that is an
upper bound of labels l1 and l2. Since l1 and l2 may be dynamic
security levels, their value may not be known statically. Symbolic
joins allow precise static reasoning about upper bounds of labels.
The decentralized label model [Myers and Liskov 1997], used in
the Jif type system, has an uninterpreted join operation that enables
precise static reasoning about upper bounds.

We begin with the Jif typing rules for expressions. To introduce
the expression typing judgment, we first introduce variable envi-
ronments and label constraint environments.

Variable Environment Γ ::= x 7→ T :: Γ | •
Label Constraint Environment δ ::= l v m | True | δ ∧ δ
Expression Typing Γ, δ `J e : T

Variable environment Γ is a partial map from variables to labeled
types. The empty environment is written •. Label constraint envi-
ronment δ encodes statically known information about the run-time
security policy. It is constructed as a conjunction of flows facts. The
flow fact True corresponds to knowing nothing about the run-time
security policy; flow fact l v m means that the run-time secu-
rity policy allows information to flow from the security level repre-
sented by l to the security level represented by m.

Finally, the Jif expression typing judgment Γ, δ `J e : T states
that expression e has labeled type T under the variable environment
Γ and label constraint environment δ. Inference rules for this judg-
ment are presented in Figure 3. For variables, we simply look up the
type in the environment (TJIF-VAR). Integer constants are typed
to int{⊥} (TJIF-INT) and level constants are typed to level{⊥}
(TJIF-LEVEL) because we assume that an observer has access to
the source code and can therefore read the constants. Operations,
both⊕ andv, require the appropriate raw types for their arguments
and compute a result protected by the join of the argument labels,
since the resulting value depends on both of the input values.

Note that rules TJIF-OP and TJIF-FLOWS use the judgment
δ ` l v l′, which means that using label constraint environment
δ, we can prove that security label l′ is an upper bound of security
label l. The inference rules for this judgment are given in Figure 4.

To present the Jif typing rules for statements, we must first in-
troduce program counter labels and path maps. A program counter
label represents the information that may be gained by knowing
that a statement executes. To prevent illegal information flows, se-
curity type systems generally use the program counter label as a
lower bound on the side effects of a statement. That is, the label of

Γ, δ `J e : T Jif Typing Expressions

x 7→ τ{l} ∈ Γ
TJIF-VAR

Γ, δ `J x : τ{l}

TJIF-INT
Γ, δ `J i : int{⊥}

TJIF-LEVEL
Γ, δ `J o : level{⊥}

Γ, δ `J ei : int{li} δ ` l1 t l2 v l
TJIF-OP

Γ, δ `J e1 ⊕ e2 : int{l}

Γ, δ `J ei : level{li} δ ` l1 t l2 v l
TJIF-FLOWS

Γ, δ `J e1 v e2 : int{l}

Figure 3. Jif typing rules for expressions.

δ ` l v l Flows Derivation Under Assumptions

F-REFL
δ ` l v l

δ ` l1 v l2 δ ` l2 v l3
F-TRANS

δ ` l1 v l3

F-CONTEXT
δ ∧ l v l′ ` l v l′

δ ` l v l′′ δ ` l′ v l′′
F-JOIN

δ ` l t l′ v l′′

F-JOINL
δ ` l v l t l′

F-JOINR
δ ` l′ v l t l′

Figure 4. Flows derivation.

any variable updated by a statement must be at least as restrictive
as the program counter label.

A path map describes the information that may be gained by
observing that a statement terminated with a particular exception.1

Path Map A ::= {C 7→l T}]A | •

An empty path map is written •. Path map {C 7→l T}] A
extends path map A by associating exception name C with the
pair (l, T), where label l is an upper bound on the information
that caused C to be thrown (i.e., the program counter at the point
of the throw statement), and T is the labeled type of the value
that the exception carries. (The type system will restrict T to being
labeled ints; we use labeled types to clarify the distinction between
the label of the decision to throw C and the label of the value
carried by the exception.) While we describe path maps concretely
as an association list with unique keys, we abuse notation and also
treat them as functions from exception names to labels, defined as

1 Path maps as presented by Myers [1999] included the normal termination
label; we distinguish the normal termination label in the typing judgment.

follows:

A(C) =

l if C 7→l T ∈ A
∅ otherwise

Here, if a mapping does not occur in the list, we use a special label ∅
(pronounced “not taken”) that is used to describe impossible paths.
When used as a program counter label for a statement s, ∅ means
that s is unreachable. Label ∅ is necessary for typing dead code,
such as code sequences after a throw statement. Like security level
⊥, ∅ is a lower bound of all labels; we distinguish ∅ from⊥ because
label ∅ is an artifact of the type system, and is not a security level
like ⊥.

Statement Typing Γ, δ `J
l s : l′, A

The Jif typing judgment for statements has the form Γ, δ `J
l

s : l′, A, where Γ is a variable environment, δ is a label constraint
environment, l is the program counter label, s is a statement, l′ is
a label that indicates what information may be gained by knowing
that s terminated normally (referred to as the “normal termination
label”), andA is a path map that describes what information may be
gained by knowing that s terminated with an exception. Inference
rules for this judgment are given in Figure 5.

The rule for skip (TJIF-SKIP) says that skip can be typed at
any program counter label l and the normal termination label is the
same as the program counter label. Assignment statements x := e
are checked using the TJIF-ASSIGN rule, which determines the
labeled type of e and checks that values with that label can be stored
in variable x assuming the constraints on δ hold. Since skip and
assignment statements always terminate normally in well-typed
programs, the resulting path map is empty in both cases. Note that
the assignment rule enforces the immutability of label variables by
requiring the raw types to be int.

The sequencing rule TJIF-SEQ for s1; s2 recursively constructs
a type for s1, and uses the normal termination label of s1 as
the program counter label of s2. This is because if an observer
learns that s2 executes, she knows that s1 terminated normally. The
normal termination label of the sequence is the normal termination
label of s2, and the resulting path map is an upper bound of the path
maps from s1 and s2, denoted δ ` A1 t A1 v A and defined in
Figure 5.

To check conditional statements, we determine the label of
the test expression and taint the program counter with it when
checking the branches. This is because knowing which branch
executed may allow an observer to determine the evaluation of the
test expression. In addition, we extract information about the run-
time security policy that can be learned from the evaluation of the
test expression, using the function implies(−), defined in Figure 5
Specifically, if the expression e1 v e2 evaluates to 1, then we add
the corresponding flow fact to the label constraint environment δ
when checking the consequent. Soundness will only require that
the implies function be a conservative approximation of the run-
time policy; i.e.

∀Φ, e, σ, v. Φ ` e, σ ⇓ v ∧ v 6= 0→ Φ ` implies(e).

Including this allows the Jif type system to accept programs whose
security depends on the run-time security policy, such as the fol-
lowing program where the assignment to y is allowed because it
will only be executed if the run-time security policy permits infor-
mation flow from x to y.

1 // Γ(x) = int{*p}
2 // Γ(y) = int{*q}
3 if (p v q) then
4 y := x
5 else
6 skip

Γ, δ `J
l s : l′, A Jif Typing Statements

TJIF-SKIP
Γ, δ `J

l skip : l, •

Γ, δ `J e : int{le}
Γ(x) = int{l′}

δ ` l v l′

δ ` le v l′
TJIF-ASSIGN

Γ, δ `J
l x := e : l, •

Γ, δ `J
l s1 : l′, A1

Γ, δ `J
l′ s2 : l′′, A2 δ ` A1 tA2 v A

TJIF-SEQ
Γ, δ `J

l s1; s2 : l′′, A

Γ, δ `J e : int{l′}
Γ, δ ∧ implies(e) `J

ltl′ s1 : l′1, A1

δ ` A1 tA2 v A
Γ, δ `J

ltl′ s2 : l′2, A2
TJIF-IF

Γ, δ `J
l if e then s1 else s2 : l′1 t l′2, A

Γ, δ `J e : int{l′} δ ` l t l′ v l′′
TJIF-THROW

Γ, δ `J
l throw (C, e) : ∅, {C 7→l int{l′′}}

Γ, δ `J
l s : l′1, A1

x : τ{lx} :: Γ, δ `J
lC
se : l′2, A2

δ ` A1\C tA2 v A
C 7→lC τ{lx} ∈ A1

x /∈ dom(Γ)
TJIF-CATCH

Γ, δ `J
l try s catch (C x) se : l′1 t l′2, A

Γ, δ `J
l s : l1, A1

A′1 ≡ A1 t l2

Γ, δ `J
l sf : l2, A2

δ ` A′1 tA2 v A
TJIF-FINALLY

Γ, δ `J
l try s finally sf : l1 t l2, A

Γ, δ `J
l s : l′, •

TJIF-SINGLEPATH
Γ, δ `J

l s : l, •
Γ, δ `J

l s : ∅, {C 7→lC T}
TJIF-SINGLEPATHEX

Γ, δ `J
l s : ∅, {C 7→l T}

implies(e) Expression Implications

implies(e) =

(
l1 v l2 if e = e1 v e2, l1 = exprToLabel(e1), and l2 = exprToLabel(e2)

True otherwise

exprToLabel(e) =

(
o if e = o

*x if e = x

A\C Path map removal

A\C =

8><>:
• if A = •
A′ if A = {C 7→l T}]A′

{D 7→l T}]A′\C if A = {D 7→l T}]A′ and D 6= C

δ ` A tA v A Path Map Upper Bounds

∀i ∈ 1..2. ∀C 7→l τ{m} ∈ Ai. ∃D 7→l′ τ{m′} ∈ A. δ ` l v l′ ∧ δ ` m v m′

δ ` A1 tA2 v A

A t l Lifting Path Maps by Labels

A t l =

(
• if A = •
{C 7→l′tl τ{m′ t l}}] (A′ t l) if A = {C 7→l′ τ{m′}}]A′

Figure 5. Jif statement typing rules.

The path map of a conditional statement is an upper bound
of the path maps of the consequent and the alternative, since the
information gained by knowing the conditional terminated with an
exception may reveal that either the consequent or the alternative
terminated with an exception.

Exceptional control structures use the path map to track the in-
formation that may be learned by observing that a particular ex-
ception was thrown. TJIF-THROW produces a path map that maps
the raised exception to the program counter label and specifies a
normal termination label of ∅ since throw (C, v) never terminates
normally. For the try s catch (C x) se construct (TJIF-CATCH),
we type-check the body of the try, s, and use the label associated
with exception C as the program counter label for the catch han-
dler se. Note that if the exception can not be thrown from within s,
then the program counter label for se is ∅, indicating that the catch
handler is unreachable. The path map for the try...catch construct
is obtained by removing C from A1 (denoted A\C) and joining it
with A2; this corresponds to propagating non-C exceptions from
s and all exceptions from se. The function A\C is defined in Fig-
ure 5. The normal termination label the try ... catch statement is
the join of the normal termination labels of s and se, since the con-
struct terminates normally if either s or se terminates normally.
Finally, we require that the variable x is not currently in the vari-
able environment and that it binds an integer value. This ensures
that there is no shadowing of variables, and that the labeled type
of a variable cannot refer to variables introduced in catch handlers.
These restrictions simplify type-checking, but are not fundamental
limitations.

The try s finally sf construct is similar to a combination of
sequencing and catch. We check both s and sf with the initial pro-
gram counter label since we know that sf is guaranteed to exe-
cute regardless of the behavior of s. Normal termination of the
try...finally block requires normal termination of both s and sf ,
and the normal termination label is thus the join of the normal ter-
mination labels of s and sf . According to the operational seman-
tics, an exception thrown by s only propagates if sf terminates nor-
mally. Thus, any exception thrown by s that propagates reveals that
sf terminated normally. We thus join the path map of s with the
normal termination label of sf , denoted A t l.

The single path rules TJIF-SINGLEPATH and TJIF-SINGLE-
PATHEX state that if a statement can terminate in only one way
(either normally, or with some particular exception), then the (nor-
mal or exceptional) termination label can be lowered to be the same
as the program counter label of the statement. This allows, for ex-
ample, the program (if h then skip else skip); l := 7 to type
check (where l and h have different security labels), since the if
command can only terminate normally. The single path rules are
important for expressiveness.

4.2 A Revised Type System
By propagating exceptions outward and checking them at their
handlers, the Jif type system loses contextual information from
where the exception was thrown. For example, if exception C
is only thrown in contexts where l v m is known through a
runtime test, then at the catch handlers for C, the flow fact l v m
will always be satisfied, but may not be in the label constraint
environment.

This could be addressed by augmenting path maps with label
constraint information, and extending the path map join operation
to merge this information intelligently. However, the same preci-
sion can be obtained by regarding path maps as constraints that
statements must satisfy, rather than summarizations of the behavior
of statements. Our type system propagates information about catch
handlers inwards, and throw statements may only throw exceptions
for which there is an appropriate enclosing catch handler. Thus, we

Γ, δ, l ` e : τ Modified typing rules for LimpL expressions

Γ(x) = τ{l′} δ ` l′ v l
T-VAR

Γ, δ, l ` x : τ

T-INT
Γ, δ, l ` i : int

T-LEVEL
Γ, δ, l′ ` o : level

Γ, δ, l ` ei : int
T-OP

Γ, δ, l ` e1 ⊕ e2 : int

Γ, δ, l ` ei : level
T-FLOWS

Γ, δ, l ` e1 v e2 : int

Figure 6. Modified LimpL typing rules for expressions.

will use path maps to describe the environment in which a state-
ment occurs. It is interesting to note that the Jif type system already
treats the label constraint environment in this way, as a description
of the enclosing context of a statement; our type system provides a
more uniform treatment of path maps and label constraint environ-
ments.

With this philosophy in mind, we present new typing rules for
expressions and statements. The Jif typing judgment for expres-
sions had the form Γ, δ `J e : τ{l}. Our typing judgment has
the same entities, but we emphasize that label l is a constraint on
the label of the expression by moving l to the left of the turnstile.
Our typing judgment for expressions has the form Γ, δ, l ` e : τ ,
and the rules are given in Figure 6. The rules are mostly similar to
the Jif rules presented earlier. The differences are highlighted by T-
VAR which checks that looking up the variable in the environment
returns the same type as τ and a label that protects information
that can flow into the desired result label. In the spirit of checking
in the most permissive context, the rules for integer constants and
constant labels use a free label l to express that a constant can be
used in any context. Finally, rather than combining labels in the
T-OP and T-FLOWS rules we simply propagate the upper-bound
constraint label into the checking of the subterms.

The Jif typing rules for expressions and the new rules presented
here are essentially equivalent in expressiveness: if Γ, δ `J e :
τ{l} then Γ, δ, l ` e : τ ; and if Γ, δ, l ` e : τ then there exists
some l′ such that δ ` l′ v l and Γ, δ `J e : τ{l′}.

We make similar changes to the typing rules for statements. The
form of the Jif typing judgment for statements is Γ, δ `J

l s : l′, A.
Since we now regard path maps and the normal termination label
as expressing constraints that s must satisfy (or alternatively, as
describing the context in which s appears), we move path map A
and normal termination label l′ to the left of the turnstile, resulting
in a new judgment of the following form.

Γ, δ, A, l′ `l s ok

Since path maps are now used to describe the context in which a
statement occurs, we refer to them as exception environments in
this section.

The rules for our typing relation are given in Figure 7. For skip,
we require that the normal termination label is an upper bound of
the program counter label and place no restrictions on the exception
environment A. Rule T-ASSIGN for assignment x := e ensures
that both the label of expression e and the program counter label
are bounded above by the label of the variable. The normal termi-

Γ, δ, A, l′ `l s ok Modified typing rules for LimpL statements

δ ` l v l′
T-SKIP

Γ, δ, A, l′ `l skip ok

Γ(x) = int{lx}
Γ, δ, lx ` e : int

δ ` l v lx
δ ` l v l′

T-ASSIGN
Γ, δ, A, l′ `l x := e ok

Γ, δ, A, l′ `l s1 ok Γ, δ, A, l′′ `l′ s2 ok
T-SEQ

Γ, δ, A, l′′ `l s1; s2 ok

Γ, δ, l′ ` e : int

Γ, δ ∧ implies(e), A, l′′ `ltl′ s1 ok
Γ, δ, A, l′′ `ltl′ s2 ok

T-IF
Γ, δ, A, l′′ `l if e then s1 else s2 ok

C 7→lC int{lx} ∈ A
Γ, δ, lx ` e : int

δ ` l v lx
δ ` l v lC

T-THROW
Γ, δ, A, l′ `l throw (C, e) ok

x /∈ dom(Γ)

Γ, δ, A[C 7→lC int{lx}], l′ `l s ok
x : int{lx} :: Γ, δ, A, l′ `lC se ok

T-CATCH
Γ, δ, A, l′ `l try s catch (C x) se ok

Γ, δ, A′, l′ `l s ok
δ ` A\l′′ = A′

Γ, δ, A, l′′ `l sf ok
δ ` l′′ v l′

T-FINALLY
Γ, δ, A, l′ `l try s finally sf ok

Γ, δ, •, l′′ `l s ok δ ` l v l′
T-SINGLEPATH

Γ, δ, A, l′ `l s ok

C 7→lC int{lx} ∈ A
Γ, δ, {C 7→l′

C
int{l′x}}, ∅ `l s ok

δ ` l v lC δ ` l′x v lx T-SINGLEPATHEX
Γ, δ, A, l′ `l s ok

δ ` A\l = A′ Exception environment filter

δ ` •\l = •

δ ` A\l = A′ δ 6` l v lC
δ ` {C 7→lC T}]A\l = A′

δ ` A\l = A′ δ ` l v lC
δ ` {C 7→lC T}]A\l = {C 7→lC T}]A′

Figure 7. Modified typing rules for LimpL statements.

nation label must be at least as restrictive as the program counter
label, and there are no restrictions on the exception environment
since, like skip assignment statements never throw exceptions. For
sequences, T-SEQ passes the exception environment downward to
the subterms and ensures that the normal termination label of s1 is
bounded above by the program counter label of s2.

The intuition behind the new typing rule for conditional state-
ments is the same as for the Jif typing rule: we require that the
consequent and alternate be typable in contexts where the program
counter is tainted by the label of the test expression. As with the
Jif rule, we extend label constraint environment δ for the conse-
quent with the additional flow facts implied by non-zero evaluation
of the test expression, using the same implies function. The only
difference with the Jif typing rule is that the exception environment
is propagated inwards, using the same exception environment for
both the consequent and the alternative.

Exceptional control flow structures constitute the most consid-
erable differences between the type systems. Now that we interpret
A as constraints on the exceptions thrown by the statement, the
side condition for checking whether an exception can be thrown
has moved from the rule for catch handlers to the rule for throw. In
rule T-THROW, we check that a handler (lC , int{lx}) is in the ex-
ception environment, and ensure that the value thrown is bounded
above by lx, and that the program counter label is bounded above
by lC . Note that the label constraint environment used to check
these upper bounds is the label constraint environment at the throw
statement, which may contain more flow facts that the label con-
straint environment at the corresponding catch handler.

In rule T-CATCH for construct try s catch (C x) se, we check
statement s using an exception environment that is extended with a
catch handler:A[C 7→lC int{lx}], where lC is the program counter
label of the catch handler. (Path map extension A[C 7→l T] is
defined as {C 7→l T}] (A\C).)

In rule T-FINALLY for statement try s finally sf , since sf

is executed regardless of the normal or exceptional termination of
s, the program counter label is the same for both s and sf . Since
an exception thrown by s is only propagated if sf terminates nor-
mally, we need to restrict the exception environment given to s. We
use judgment δ ` A\l′′ = A′ to ensure that A′, the exception en-
vironment given to s, is derived from exception environment A by
removing any handler whose label is not provably an upper bound
of l′′, the normal termination label of sf . This restriction of the ex-
ception environment is required to rule out programs with illegal
information flow via the finally construct. For example, consider
the following program, assuming that lo and hi have different se-
curity levels and information flows is not allowed to flow from hi
to lo. Rule T-FINALLY would reject this program, since the catch
handler for exception C must be removed from the exception en-
vironment used to check the throw statement on line 3. Without
removing the exceptions, the throw is checked in a context that
can throw C allowing the implicit flow.

1 try {
2 try {
3 throw (C, 0)
4 }
5 finally {
6 if (hi) then throw (D, 0) else skip
7 }
8 }
9 catch (C x) {

10 lo := 1 /∗ here , we know that hi is non−zero ∗/
11 }

Rule T-SINGLEPATH states that if a statement type checks with
an empty exception environment (i.e., it can only terminate nor-

mally), then the statement typechecks in any context where the
normal termination label is bounded below by the program counter
label. Rule T-SINGLEPATHEX is similar, but allows us to specify a
distinguished exception from the exception environment. Note that
in this case, the normal termination program counter label is free
since statement s will never terminate normally.

Since our rules are fundamentally non-structural it could be dif-
ficult to determine when to apply these rules without exception
propagation information, which the Jif type system collects im-
plicitly in its typing rules. This can be addressed by performing
a simple analysis to determine the ways by which a statement can
terminate, and using the results of this analysis to guide the guesses
for applications of single path rules.

5. Type System Properties
The goal of our type system is to ensure that well-typed LimpL
programs neither get stuck nor leak information. We also show
that our type system is strictly more permissive than the Jif type
system adapted to our calculus. Here we present only high-level
proof sketches; full proofs are given in the companion technical
report [Malecha and Chong 2010]. Before stating our theorems, we
define some judgments that relate variable environments and stores
and clarify some notations described earlier.

We say that store σ is typed by variable environment Γ (written
Γ ` σ) if for every variable x the type of value σ(x) is Γ(x). More
formally,

Γ ` σ , ∀x, τ, l. x : τ{l} ∈ Γ⇒ ∃v : τ, σ(x) = v

Observational equivalence of two stores, Γ ` σ1 ≈o σ2, which
was described in Section 2, is defined as follows.

Γ ` σ1 ≈o σ2 , ∀x. τ{o} ∈ Γ⇒ σ1(x) = σ2(x)

In Section 2, we used the phrase “Γ protects x at level o”
to mean variable x is not observable at any security level less
restrictive than security level o. More formally, we say Γ protects
x at level o if Γ(x) = τ{o}.

5.1 Type Safety
The simplicity of the types in our calculus make proving type safety
simple. Based on our small-step semantics, we prove progress
and preservation lemmas that show that well-typed terms do not
get stuck during evaluation and that evaluation preserves well-
typedness.

Lemma 1 (Progress). If Γ, δ, A, l′ `l s ok and Γ ` σ, then either
s is a value or there exists s′, σ′ such that Φ ` s, σ → s′, σ′.

Proof. Induction on the typing derivation.

Lemma 2 (Preservation). If Γ, δ, A, l′ `l s ok, Γ ` σ, and
Φ ` s, σ → s′, σ′, and Φ ` δ σ, then there exists Γ′ and δ′

such that Γ′, δ′, A, l′ `l s
′ ok and Φ ` δ′ σ′.

Proof. Induction on the typing derivation.

Appropriately adapted forms of these lemmas are also true for
the Jif type system since the two type systems have the same
rules when labeled types are erased to raw types. Combined these
theorems suggest that ignoring the labels in our type system leads
to a standard type system for loopless IMP with exceptions.

5.2 Non-interference
The focus of this work is proving that well-typed terms are secure,
that is, they satisfy non-interference. We prove the following theo-
rem for our type system.

Theorem 3 (Non-interference). For all statements s, contexts Γ,
and security labels o, if

Γ,True, •, o `l s ok

then for all security policies Φ, for all stores σ, and for all variables
h such that Γ(h) = τ{o′} and o′ 6vL o, and for all values v1, v2
of type τ , if

Φ ` s, σ[h 7→ v1]→∗ v′1, σ′1
and

Φ ` s, σ[h 7→ v2]→∗ v′2, σ′2
then Γ ` σ′1 ≈o σ

′
2 and v′1 = v′2.

Proof. Using the technique of Pottier and Simonet [2003], we de-
fine a language Limp2

L that is capable of modeling two differ-
ent executions of a program. We then prove by induction that the
two input stores will produce two observationally equivalent final
stores.

5.3 Precision
To understand the relationship between our type system and the
standard Jif type system, we show that our type system accepts
strictly more programs than the Jif type system adapted for our
calculus.

Theorem 4 (Inclusion). If Γ, δ `J
l s : l′, A then Γ, δ, A, l′ `l s ok.

Proof. Induction on the Jif typing relation. The key insight is that
we can pick all of the same labels as the Jif type system picked. The
label constraint environment that our type system uses to check
conditions of the form δ ` l1 v l2 contains at least as much
information as the corresponding label constraint environment that
the Jif type system uses to check the same condition.

Theorem 5 (Strict Inclusion). There exists s,Γ, δ, l, l′, andA such
that Γ, δ, A, l′ `l s ok and not Γ, δ `J

l s : l′, A.

Proof. Adapting the Jif program from the introduction to LimpL
we have:

1 try
2 if (p v q) then
3 if (y > 0) then throw (C, 0) else skip
4 else skip
5 catch (C x)
6 z = 1

Let Γ = {p : level{⊥}, q : level{⊥}, y : int{*p}, z : int{*q}}.
When checking the throw statement, the flow fact p v q is in the
label constraint environment. Our type system uses this flow fact to
conclude that the throw is legal in the context. The Jif type system,
on the other hand, checks whether the exception can be thrown with
the empty label constraint environment, and is therefore unable
prove that the program is secure.

The witness used in the proof of Theorem 5 is by no means the
only witness, but is a rather simple one. In general, our reformu-
lation of the Jif type system is more precise in checking programs
that throw exceptions under conditions that test the label lattice in
try blocks.

6. Exceptions with Subtyping
The calculus presented here is very simple, in order to present the
key innovation of our type system. However, the full Jif program-
ming language contains many additional language features. In this
section, we bring our calculus slightly closer to the full expressive-
ness of the Jif language by extending our calculus with exceptions
with subtyping and show how to adapt our type system. We will
assume that it is not always possible to determine the exact type of
an exception in a purely syntax-directed manner. We will, however,
omit programmatic constructs that would hide the concrete class
(for example, variables with exception type).

The syntax of this extended calculus, which we call Limp≤:
L , is

the same as the syntax for LimpL. The subtyping over exceptions is
expressed in the semantics by parameterizing statement evaluation
by the subtyping relation, denoted ≤:. The only requirements on
this relation is that it must form a partial order. Figure 8 gives
the new Limp≤:

L semantics for the try ... catch construct, which
are the only notable differences to the semantics for LimpL. An
exception is caught if the type of the exception is a subtype of the
exception declared in the catch block (rule E≤:-CATCHCATCH).
If the body of the try throws an exception C that is not a subtype
of D, then the exception is propagated.

We can support exception subtyping by converting our flat ex-
ception environments into a stack of exception handlers. Exception
environments are now described by the following type:

Exception environment A ::= C 7→l T :: A
| F 7→l − :: A | •

As before, T is the labeled type that binds the value carried by the
exception and l is the program counter label of the catch handler.
We denote finally handlers by the distinguished name F , which
does not carry a value since finally blocks do not bind the exception
value.

Figure 9 presents the necessary changes to the type system to
support exception subtyping. The changes are similar to mecha-
nisms in the Jif type system to handle subtyping for exceptions. The
primary difference is the additional exception propagation relation
which walks the exception environment and checks that informa-
tion flow is permitted at all handlers that might catch a particular
exception. This relation has the following form:

δ, C m `l A

which states that an exception with name C and value protected
by label m can be thrown from a statement with program counter
label l under the exception environment A and the label constraint
environment δ.

Propagation stops when an exception reaches a handler that
must catch it (P-MUSTCATCH). This requires that the propagating
exception is a subtype of the handled exception. In this case, the
label of the program counter at the throw site must be able to flow
to the exception handler’s program counter label. If the exception
type of the handler is a subtype of the thrown exception type, then
it may catch the exception so we must check against this handler as
well as the rest of the chain (P-MAYCATCH). This rule uses <: to
mean a strict subclass of, i.e. C <: D if C ≤: D and C 6≤: D.

If the exception type and the handler type are not related then
we know that the exception won’t be caught by this handler and it
can be skipped (P-PASS). The P-FINALLY block raises the program
counter label of the exception and checks the rest of the chain with
the augmented exception. This corresponds to the case when the
finally block terminates normally and the exception is re-thrown.
Raising the program counter label accomplishes the same thing as
not permitting the lower exceptions from being thrown since the
l v l′ requirement in P-MUSTCATCH and P-MAYCATCH will
no longer hold. In the special case where a finally block can not

Γ, δ, A, l′ `l s ok Exception subtyping type rules

x /∈ dom(Γ)

Γ, δ, C 7→lC int{le} :: A, l′ `l s ok
x 7→ int{le} :: Γ, δ, A, l′ `lC se ok

T-CATCH
Γ, δ, A, l′ `l try s catch (C x) se ok

Γ, δ, A, l′′ `l sf ok
δ ` l′′ v l′

δ ` A\l′′ = A′

Γ, δ,F 7→l′′ − :: A′, l′ `l s ok
T-FINALLY

Γ, δ, A, l′ `l try s finally sf ok

Γ, δ ` e : int{l′′} δ, C l′′ `l A
T-THROW

Γ, δ, A, l′ `l throw (C, e) ok

δ, C m `l A Exception Propagation Relation

D ≤: C

δ ` l v l′

δ ` m t l v m′
P-MUSTCATCH

δ, C m `l D 7→l′ τ{m′} :: A

C <: D

δ ` l v l′

δ ` m t l v m′ δ, C m `l A
P-MAYCATCH

δ, C m `l D 7→l′ τ{m′} :: A

C 6≤: D D 6≤: C δ,C m `l A
P-PASS

δ, C m `l D 7→l′ m
′ :: A

δ,C m `ltl′ A l′ 6= ∅
P-FINALLY

δ, C m `l F 7→l′ − :: A

P-FINALLYEND
δ, C m `l F 7→∅ − :: A

Figure 9. Typing rules for exception propagation with subtypes.

terminate normally (P-FINALLYEND), we can ignore the rest of
the chain since it will be checked when checking the finally block
itself.

Using the exception propagation relation, modifications to the
exception handling rules are mostly syntactic. T-CATCH is just
adapted to use the new path map. T-FINALLY adds a finally marker
to the top of the exception environment for checking s, with the
label equal to the normal termination label of sf . Finally, the flows
test in T-THROW changes to the exception propagation relation
with the appropriate parameters.

We are currently working on proving that this extended type
system enforces non-interference.

7. Discussion
We have proven that our type system enforces non-interference and
that it permits strictly more programs than the existing Jif type
system (adapted for our calculus). It is important to note that this
improvement in expressivity is not of purely theoretical interest.
Our type system would help developers write provably secure code
without resorting to awkward coding idioms to convince the type
system that the desired security property holds.

≤:,Φ ` s, σ → s, σ Limp≤:
L Semantics

≤:,Φ ` s, σ → s′, σ′

E≤:-CATCHSTEP≤:,Φ ` try s catch (C x) sc, σ → try s′ catch (C x) sc, σ
′

C ≤: D
E≤:-CATCHCATCH≤:,Φ ` try throw (C, v) catch (Dx) sc, σ → sc, σ] {x 7→ v}

C 6≤: D
E≤:-CATCHPASS≤:,Φ ` try throw (C, v) catch (Dx) sc, σ → throw (C, v), σ′

E≤:-CATCHSKIP≤:,Φ ` try skip catch (Dx) sc, σ → skip, σ′

Figure 8. Small-step operational semantics for Limp≤:
L .

We note that the additional expressivity of our system is derived
from the standard formalism that type systems are relations rather
than computations. This re-formulation may have implications for
the implementation which we have not yet had the chance to ex-
plore, especially in its interaction with the mechanism for infer-
ring security labels in Jif. Label inference is essential to adapting
existing Java code and even writing new Jif programs due to the
verbosity of explicitly labeling variables.

The similarity of our type system with respect to almost all con-
structs except for exceptions is interesting. Specifically, note that
the problem of maintaining all of the static information known by
the system is only complicated by the non-local control associated
with exceptions. If we remove exceptions, then the two type sys-
tems are equally expressive. This insight justifies our choice of a
very minimal calculus which lacks even basic constructs such as
loops and functions. Since the semantics of these constructs do not
exhibit the kind of non-local control that exceptions introduce, we
expect it to be relatively straightforward to adapt the existing Jif
rules for our new type system.

While our formalization ignores the complexities introduced
from potential non-termination [Sabelfeld and Myers 2003], it is
not difficult to see how the rules could be extended to yield a
termination sensitive or insensitive information flow analysis with
the inclusion of loops. Neither timing channels nor concurrency
are dealt with in our system, nor are they addressed by the Jif
system, though existing work suggests several ways to deal with
these problems [Smith and Volpano 1998].

7.1 Related Work
In addition to the background work on information flow type sys-
tems and the Jif language, our contributions draw on work from a
variety of sources. Non-interference in the presence of first-class
labels is studied by both Zheng and Myers [2004] and Grabowski
and Beringer [2009]. They consider languages that permit dy-
namic checks on security labels, and show non-interference results.
Grabowski and Beringer [2009] consider the possibility that the
run-time security policy may be chosen after the program has been
analyzed. This mechanism is closely related to the more general
feature of dependent types. Seen in this way, run-time label tests
can be viewed as a form of run-time-type analysis which is a basic
component of the more general reflective programming techniques.

This insight is not new, Tse and Zdancewic [2007] define the
λRP calculus which is modeled on the lambda calculus and sup-
ports run-time reflection on the actsFor relation, which is another
part of the run-time security policy. They note that, while seemingly
intertwined, reflection on actsFor and reflection on label tests are
mostly orthogonal; this justifies our focus on security levels, and

not on security principals. Supporting such an extension in our type
system requires supporting, and reasoning about, actsFor facts in
the constraint environment δ and adding principals that, like labels,
need to be immutable.

Nanevski [2004] argues for a co-monadic formulation of excep-
tions rather than the, probably more well known, monadic formu-
lation. This distinction parallels the shift from propagating excep-
tions outward (the monadic style) to propagating the capability to
raise an exception (the co-monadic style).

8. Conclusions
We have described a new type system for an imperative calculus
with named exceptions that enforces non-interference and is strictly
more permissive than the existing Jif type system when restricted
to our fragment. Our key insight is to relax the computational flavor
the existing type system in favor of a constraint-based system that
checks side conditions at the point of most knowledge. We proved
our modified type system enforces non-interference. In addition,
we discussed how our type system can be extended to handle a
hierarchy of exceptions and the addition of a single path rule for
safely lowering labels when statements can be proven to terminate
in a single way.

Future Work
Our work suggests two interesting avenues for future work. The
first is to determine the empirical cost of our constraint-based type
system compared to the Jif type system. If our type system is
proven feasible for our calculus it would be useful to extend out
type system to handle the full Jif language. This would require
extending the type system to handle looping constructs, including
break and continue, functions, objects, and declassification as
well as converting our simplified label model to the decentralized
label model.

Once the type system addresses the full Jif language, it will be
interesting to see the effect that it has on programming in Jif. We
have shown that our type system permits more programs but we
do not yet understand how our type system interacts with label
inference or how it compares to the current type system in terms
of being efficiently checkable.

References
Aslan Askarov and Andrei Sabelfeld. Tight enforcement of information-

release policies for dynamic languages. In CSF ’09: Proceedings of
the 2009 22nd IEEE Computer Security Foundations Symposium, pages
43–59, Washington, DC, USA, 2009. IEEE Computer Society. ISBN
978-0-7695-3712-2. doi: http://dx.doi.org/10.1109/CSF.2009.22.

Cadar, Cristian and Dunbar, Daniel and Engler, Dawson. KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests for Complex
Systems Programs. In Proceedings of OSDI, 2008.

Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and
Ryan Wisnesky. Effective interactive proofs for higher-order imper-
ative programs. In ICFP ’09: Proceedings of the 14th ACM SIG-
PLAN international conference on Functional programming, pages 79–
90, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-332-7. doi:
http://doi.acm.org/10.1145/1596550.1596565.

Stephen Chong and Andrew C. Myers. Decentralized robustness. In
CSFW ’06: Proceedings of the 19th IEEE workshop on Computer Se-
curity Foundations, pages 242–256, Washington, DC, USA, 2006. IEEE
Computer Society. ISBN 0-7695-2615-2. doi: http://dx.doi.org/10.1109/
CSFW.2006.11.

Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian
Zheng, and Xin Zheng. Secure web applications via automatic partition-
ing. In Proceedings of the 21st ACM Symposium on Operating System
Principles, pages 31–44, 2007a.

Stephen Chong, K. Vikram, and Andrew C. Myers. SIF: Enforcing confi-
dentiality and integrity in web applications. In Proceedings of the 16th
USENIX Security Symposium, pages 1–16. USENIX Association, Au-
gust 2007b.

Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas:
Toward a secure voting system. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 354–368. IEEE Computer Society, May
2008.

Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: a flexi-
ble information flow architecture for software security. In ISCA ’07:
Proceedings of the 34th annual international symposium on Computer
architecture, pages 482–493, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-706-3. doi: http://doi.acm.org/10.1145/1250662.1250722.

Dorothy E. Denning and Peter J. Denning. Certification of programs for
secure information flow. Commun. ACM, 20(7):504–513, 1977. ISSN
0001-0782. doi: http://doi.acm.org.ezp-prod1.hul.harvard.edu/10.1145/
359636.359712.

David Endler. The evolution of cross site scripting attacks. Technical report,
iDEFENSE Labs, 2002.

Joseph A. Goguen and Jose Meseguer. Security policies and security
models. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 11–20. IEEE Computer Society, April 1982.

Robert Grabowski and Lennart Beringer. Noninterference with dynamic se-
curity domains and policies. 13th Asian Computing Science Conference,
Focusing on Information Security and Privacy, 5913, 2009.

Nevin Heintze and Jon G. Riecke. The slam calculus: programming with
secrecy and integrity. In POPL ’98: Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 365–377, New York, NY, USA, 1998. ACM. ISBN 0-
89791-979-3. doi: http://doi.acm.org/10.1145/268946.268976.

Boniface Hicks, Kiyan Ahmadizadeh, and Patrick McDaniel. Understand-
ing practical application development in security-typed languages. In
22nd Annual Computer Security Applications Conference (ACSAC), Mi-
ami, Fl, December 2006.

Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and An-
drew C. Myers. Fabric: A platform for secure distributed computation
and storage. In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP’09), October 2009.

Gregory Malecha and Stephen Chong. A more precise security type sys-
tem for dynamic security tests. Technical Report TR-05-10, Harvard
University, May 2010.

Andrew C. Myers. JFlow: Practical mostly-static information flow control.
In Conference Record of the Twenty-Sixth Annual ACM Symposium on
Principles of Programming Languages, pages 228–241, New York, NY,
USA, January 1999. ACM Press.

Andrew C. Myers and Barbara Liskov. A decentralized model for informa-
tion flow control. In Proceedings of the 16th ACM Symposium on Op-
erating System Principles, pages 129–142, New York, NY, USA, 1997.
ACM Press.

Alexander Nanevski. Functional Programming with Names and Necessity.
PhD thesis, Carnegie Mellon University, 2004.

François Pottier and Vincent Simonet. Information flow inference for
ml. ACM Transactions on Programming Languages and Systems, 25
(1):117–158, 2003. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/
596980.596983.

Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1),
January 2003.

Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-
threaded imperative language. In POPL ’98: Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 355–364, New York, NY, USA, 1998. ACM. ISBN
0-89791-979-3. doi: http://doi.acm.org.ezp-prod1.hul.harvard.edu/10.
1145/268946.268975.

Zhendong Su and Gary Wassermann. The essence of command injection
attacks in web applications. SIGPLAN Notices, 41(1):372–382, 2006.
ISSN 0362-1340. doi: http://doi.acm.org/10.1145/1111320.1111070.

Stephen Tse and Steve Zdancewic. Run-time principals in information-
flow type systems. ACM Trans. Program. Lang. Syst., 30, November
2007. ISSN 0164-0925. doi: 10.1145/1290520.1290526. URL
http://portal.acm.org.ezp-prod1.hul.harvard.edu/
citation.cfm?id=1290520.1290526.

Andrew van der Stock, Jeff Williams, and Dave Wichers. OWASP top 10,
2007.

P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.
Cross-site scripting prevention with dynamic data tainting and static
analysis. In Network and Distributed System Security Symposium (NDSS
’07), February 2007.

Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system
for secure flow analysis. Journal of Computer Security, 4(3):167–187,
1996.

Glynn Winskel. The formal semantics of programming languages: an
introduction. MIT Press, Cambridge, MA, USA, 1993. ISBN 0-262-
23169-7.

Lantian Zheng and Andrew C. Myers. Dynamic security labels and nonin-
terference. In Formal Aspects in Security and Trust, Toulouse, France,
August 2004.

http://portal.acm.org.ezp-prod1.hul.harvard.edu/citation.cfm?id=1290520.1290526
http://portal.acm.org.ezp-prod1.hul.harvard.edu/citation.cfm?id=1290520.1290526

	1 Introduction
	2 Background
	3 The Language
	3.1 Semantics

	4 Typing Information Flow
	4.1 Type Checking á la Jif
	4.2 A Revised Type System

	5 Type System Properties
	5.1 Type Safety
	5.2 Non-interference
	5.3 Precision

	6 Exceptions with Subtyping
	7 Discussion
	7.1 Related Work

	8 Conclusions

