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The future is built on BedRock.

BedRock Systems

Unbreakable Foundation for 
the Software Defined World

Enable everyone to write 
and share verified code! 

Formally verified, 
deep specifications.
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From source to 
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Surface Complexities
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● Type checking
● Overload resolution
● Syntactic sugar
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cpp2v -o a_cpp.v src/a.cpp -- --target=aarch64-none-elf -
std=gnu++17 -O2 -fno-exceptions -fno-rtti -fno-
threadsafe-statics -fno-builtin -I./include 
-I./include/aarch64

Standard clang 
compiler options.

Compatible with C

Also runnable as a clang plugin.

Include extra information to 
ease consumption:

► value categories,
► types,
► implicit initializers,
► overload resolution,
► some desugaring,
► etc.
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And for other value categories & language constructs: wp_lval, wp_xval
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The program logic for C++

These are values, 
e.g. integers

Locals

“Thread identifier”

Temporaries to destroy

Iris mask

Declarations

And for other value categories & language constructs: wp_lval, wp_xval
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Variables & 
Regions
All program state is 
represented uniformly 
as resources
►Simple representation 

of stack-allocated 
structs

►More uniform 
representation 
predicates

Mapping from 
names to location

Location of x is a
(persistent)

All locations are 
accessed uniformly.
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● #include & macros
○ Verification after macro 

expansion
○ C++ is moving away from 

macros towards language-
based features, e.g. 
constexpr

● Lots of code in header files.

File-modular Verification

lib.cpp

#include “lib.hpp”

struct F { … };
int main() { … }

lib.hpp

int foo(int) { … }
extern int bar();

main.cpp

#include “lib.hpp”

struct B { … };
int main() { … }

Verify once!
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Fairly easy due to information in the 
AST, e.g. explicit cast nodes, etc.
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(Do you have ideas?)
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Features of C++

Semantic Challenges

● Value categories
● Side-effects
● Modularity

Weakest precondition 
semantics in Iris

Classes + Objects

● Constructors
● Destructors
● Inheritance

Describe the object system 
in separation logic.

Surface Complexities

● Parsing
● Type checking
● Overload resolution
● Syntactic sugar

Hooking into existing 
tooling

Unsupported Features
● Uninstantiated templates
● Lambda expressions
● virtual inheritance
● Exceptions
● Weak memory
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Verification for Everyone
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🙶Every engineer uses some form of “verification" 
in their head ..., formal verification simply helps 
putting that on paper precisely.🙷

~Systems Engineer

Separation logic 
is central to this.
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It helps!

● Teaching everyone to specify their code
○ Very helpful to tie verification to a language they already know.
○ Systems engineers able to write first-order specifications.
○ Seems to be some cognitive benefit to classes.

🙶Every engineer uses some form of “verification" 
in their head ..., formal verification simply helps 
putting that on paper precisely.🙷

~Systems Engineer

Separation logic 
is central to this.
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Summary

► cpp2v is a tool for importing C++ code in Coq

► Built on top of the clang toolchain

► Axiomatic semantics of (much of) C++

► Some interesting challenges in C++

cpp2v 
https://github.com/bedrocksystems/cpp2v

Contributions, collaborations, 
and users welcome
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