
Towards an Axiomatic Basis for C++
Gregory Malecha, Abhishek Anand, Gordon Stewart

BedRock Systems

The future is built on BedRock.

BedRock Systems

Unbreakable Foundation for
the Software Defined World

Enable everyone to write
and share verified code!

Formally verified,
deep specifications.

The future is built on BedRock.

...

Verification target

NOVA (microhypervisor)

Zeta Userspace

vETH
Switch

vUART
Mux

...
VMM

Guest

VMM

Guest

The future is built on BedRock.

...

Verification target

NOVA (microhypervisor)

Zeta Userspace

vETH
Switch

vUART
Mux

...
VMM

Guest

VMM

Guest

C++ CodeC++ Code

Deep correctness
properties of highly
concurrent, low-level code.

Deep correctness
properties of highly
concurrent, low-level code.

The future is built on BedRock.

Working with C++

The future is built on BedRock.

The verification toolchain

a.cpp

a_cpp_proof.v

From source to
proof?

The future is built on BedRock.

The verification toolchain

a.cpp

a_cpp_proof.v
syntax.v
logic.v

The future is built on BedRock.

The verification toolchain

a.cpp a_cpp.v

a_cpp_proof.v

cpp2v

syntax.v
logic.v

The future is built on BedRock.

The verification toolchain

a.cpp a_cpp.v a_cpp_spec.v

a_cpp_proof.v

cpp2v

syntax.v
logic.v

The future is built on BedRock.

The verification toolchain

a.cpp a_cpp.v a_cpp_spec.v

a_cpp_proof.v

cpp2v

syntax.v
logic.v

The future is built on BedRock.

The verification toolchain

a.cpp a_cpp.v a_cpp_spec.v

a_cpp_proof.v

cpp2v

auto.v
syntax.v
logic.v

The future is built on BedRock.

The verification toolchain

a.cpp a_cpp.v a_cpp_spec.v

a_cpp_proof.v

cpp2v

auto.v
syntax.v
logic.v

The future is built on BedRock.

Building on previous work

 C
 (CompCert,VST)

Imp

Iris separation
logic library

The future is built on BedRock.

C++
(.., 14, 17, ...)

C++
(.., 14, 17, ...)

Building on previous work

 C
 (CompCert,VST)

Imp

Iris separation
logic library

The future is built on BedRock.

Features of C++

Semantic Challenges

● Value categories
● Side-effects
● Modularity

Classes + Objects

● Constructors
● Destructors
● Inheritance

Surface Complexities

● Parsing
● Type checking
● Overload resolution
● Syntactic sugar

The future is built on BedRock.

Features of C++

Semantic Challenges

● Value categories
● Side-effects
● Modularity

Classes + Objects

● Constructors
● Destructors
● Inheritance

Surface Complexities

● Parsing
● Type checking
● Overload resolution
● Syntactic sugar

Hooking into existing
tooling

The future is built on BedRock.

Uses clang to build C++ ASTs
from source files.

► First-order AST,
► embedded types

cpp2v

a.cpp a_cpp.v
cpp2v

The future is built on BedRock.

Uses clang to build C++ ASTs
from source files.

► First-order AST,
► embedded types

cpp2v

a.cpp a_cpp.v
cpp2v

cpp2v -o a_cpp.v src/a.cpp -- --target=aarch64-none-elf -
std=gnu++17 -O2 -fno-exceptions -fno-rtti -fno-
threadsafe-statics -fno-builtin -I./include
-I./include/aarch64

Standard clang
compiler options.

Also runnable as a clang plugin.

The future is built on BedRock.

Uses clang to build C++ ASTs
from source files.

► First-order AST,
► embedded types

cpp2v

a.cpp a_cpp.v
cpp2v

Minimal pre-processing
(close to C++ standard).

cpp2v -o a_cpp.v src/a.cpp -- --target=aarch64-none-elf -
std=gnu++17 -O2 -fno-exceptions -fno-rtti -fno-
threadsafe-statics -fno-builtin -I./include
-I./include/aarch64

Standard clang
compiler options.

Compatible with C

Also runnable as a clang plugin.

The future is built on BedRock.

Uses clang to build C++ ASTs
from source files.

► First-order AST,
► embedded types

cpp2v

a.cpp a_cpp.v
cpp2v

Minimal pre-processing
(close to C++ standard).

cpp2v -o a_cpp.v src/a.cpp -- --target=aarch64-none-elf -
std=gnu++17 -O2 -fno-exceptions -fno-rtti -fno-
threadsafe-statics -fno-builtin -I./include
-I./include/aarch64

Standard clang
compiler options.

Compatible with C

Also runnable as a clang plugin.

Include extra information to
ease consumption:

► value categories,
► types,
► implicit initializers,
► overload resolution,
► some desugaring,
► etc.

The future is built on BedRock.

Features of C++

Semantic Challenges

● Value categories
● Side-effects
● Modularity

Weakest precondition
semantics in Iris

Classes + Objects

● Constructors
● Destructors
● Inheritance

Surface Complexities

● Parsing
● Type checking
● Overload resolution
● Syntactic sugar

Hooking into existing
tooling

The future is built on BedRock.

The program logic for C++

These are values,
e.g. integers

And for other value categories & language constructs: wp_lval, wp_xval

The future is built on BedRock.

The program logic for C++

These are values,
e.g. integers

Locals

“Thread identifier”

Temporaries to destroy

Iris mask

Declarations

And for other value categories & language constructs: wp_lval, wp_xval

The future is built on BedRock.

Variables &
Regions
All program state is
represented uniformly
as resources
►Simple representation

of stack-allocated
structs

►More uniform
representation
predicates

Mapping from
names to location

Location of x is a
(persistent)

All locations are
accessed uniformly.

The future is built on BedRock.

● #include & macros
○ Verification after macro

expansion
○ C++ is moving away from

macros towards language-
based features, e.g.
constexpr

● Lots of code in header files.

File-modular Verification

lib.cpp

#include “lib.hpp”

struct F { … };
int main() { … }

lib.hpp

int foo(int) { … }
extern int bar();

main.cpp

#include “lib.hpp”

struct B { … };
int main() { … }

Verify once!

The future is built on BedRock.

● #include & macros
○ Verification after macro

expansion
○ C++ is moving away from

macros towards language-
based features, e.g.
constexpr

● Lots of code in header files.

File-modular Verification

lib.cpp

#include “lib.hpp”

struct F { … };
int main() { … }

lib.hpp

int foo(int) { … }
extern int bar();

main.cpp

#include “lib.hpp”

struct B { … };
int main() { … }

Preservation under
compatible extension

The future is built on BedRock.

Features of C++

Semantic Challenges

● Value categories
● Side-effects
● Modularity

Weakest precondition
semantics in Iris

Classes + Objects

● Constructors
● Destructors
● Inheritance

Describe the object system
in separation logic.

Surface Complexities

● Parsing
● Type checking
● Overload resolution
● Syntactic sugar

Hooking into existing
tooling

The future is built on BedRock.

Supporting Classes + Objects
Classes are a pervasive
addition in C++

►Constructors
►Destructors
►Member functions
►Virtual functions

Fairly easy due to information in the
AST, e.g. explicit cast nodes, etc.

The future is built on BedRock.

Supporting Classes + Objects
Classes are a pervasive
addition in C++

►Constructors
►Destructors
►Member functions
►Virtual functions

Object identity is intricate
►Track it using language-

specific ghost state

Fairly easy due to information in the
AST, e.g. explicit cast nodes, etc.

The future is built on BedRock.

Supporting Classes + Objects
Classes are a pervasive
addition in C++

►Constructors
►Destructors
►Member functions
►Virtual functions

Object identity is intricate
►Track it using language-

specific ghost state

Still looking for a good abstraction for reasoning.
(Do you have ideas?)

Fairly easy due to information in the
AST, e.g. explicit cast nodes, etc.

The future is built on BedRock.

Features of C++

Semantic Challenges

● Value categories
● Side-effects
● Modularity

Weakest precondition
semantics in Iris

Classes + Objects

● Constructors
● Destructors
● Inheritance

Describe the object system
in separation logic.

Surface Complexities

● Parsing
● Type checking
● Overload resolution
● Syntactic sugar

Hooking into existing
tooling

Unsupported Features
● Uninstantiated templates
● Lambda expressions
● virtual inheritance
● Exceptions
● Weak memory

The future is built on BedRock.

Verification for Everyone

The future is built on BedRock.

It helps!

🙶Every engineer uses some form of “verification"
in their head ..., formal verification simply helps
putting that on paper precisely.🙷

~Systems Engineer

Separation logic
is central to this.

The future is built on BedRock.

It helps!

● Teaching everyone to specify their code
○ Very helpful to tie verification to a language they already know.
○ Systems engineers able to write first-order specifications.
○ Seems to be some cognitive benefit to classes.

🙶Every engineer uses some form of “verification"
in their head ..., formal verification simply helps
putting that on paper precisely.🙷

~Systems Engineer

Separation logic
is central to this.

The future is built on BedRock.

Summary

► cpp2v is a tool for importing C++ code in Coq

► Built on top of the clang toolchain

► Axiomatic semantics of (much of) C++

► Some interesting challenges in C++

cpp2v
https://github.com/bedrocksystems/cpp2v

Contributions, collaborations,
and users welcome

	Slide: 1
	BedRock Systems
	Verification target
	Verification target
	Working with C++
	The verification toolchain
	The verification toolchain (1)
	The verification toolchain (2)
	The verification toolchain (3)
	The verification toolchain (4)
	The verification toolchain (5)
	The verification toolchain
	Building on previous work (1)
	Building on previous work (2)
	Features of C++
	Features of C++
	cpp2v (1)
	cpp2v (2)
	cpp2v (3)
	cpp2v (4)
	Features of C++
	The program logic for C++ (1)
	The program logic for C++ (2)
	Variables & Regions
	File-modular Verification
	File-modular Verification
	Features of C++
	Supporting Classes + Objects
	Supporting Classes + Objects (1)
	Supporting Classes + Objects (2)
	Features of C++
	Verification for Everyone
	It helps! (1)
	It helps! (2)
	Summary

