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Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.
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Foundational Proofs for Simple Entailments

A∧ (B∧C) ⊢ A∧ (B∧C)
∧-ASSOC

A∧ (B∧C) ⊢ (A∧B)∧C
∧-COMM

A∧ (B∧C) ⊢ C ∧ (A∧B)
∧-COMM

A∧ (B∧C) ⊢ C ∧ (B∧A)

Ltac Automation
Ltac my_tauto := repeat

first [ reflexivity
| apply ∧-Comm
| apply ∧-Assoc
| ... ].

Proof tree

Foundational proofs require
that we make all steps explicit.

builds

Still have to build & check the proof

Kernel cannot use custom algorithms!
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Computation in Logic/Type Theory

CONV†

⊢ P

⊢ QP ≡ Q

⊢ P = Q

Ext. Type Theory

P =⇒∗ Q

Int. Type Theory

Many steps!

Meta-logic equality

† Abbreviated from the actual type theory rule.
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Computational Reflection [Bou97]

Thm rtauto_sound : ∀ g,
rtauto g = true→ J g KProp.

Proof. ... Qed.

A∧ (B∧C) ⊢ C ∧ (B∧A)

A∧ (B∧C) ⊢ C ∧ (A∧B)

A∧ (B∧C) ⊢ (A∧B)∧C

A∧ (B∧C) ⊢ A∧ (B∧C)

Syntactic Semantic

JA∧(B∧C) ⊢ C∧(B∧A)KProp

CONV

rtauto(A∧(B∧C) ⊢ C∧(B∧A))=true

true = true
Function

Soundness proof

Small proof, custom algorithm Large proof
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Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.
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Composing Reflective Procedures

Logic Arithmetic Logic+Arith
rtauto arith rtauto_arith

⊕ =

True∧X a+b=b+a True∧(a+b=b+a)

p ::= True | p1∧p2
p ::= a1=a2
a ::= a1+a2

Datatypes a.la. carte [Swi08]
Metatheory a.la. carte [DdSOS13]

λ (X)
t ::= T# | t1→t2
e ::= X# | e1@e2 | λ t.e | xn

X∧ @XTrue @
(X= @ (X+ @a @b)

@ (X+ @b @a))

Semantic

Define independently Soundness theorems
reason about the
denotation function
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Define independently Soundness theorems
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denotation function
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Composing Reflective Automation

λ ∧ +,=( ),

Must agree on overlap

Two ways to achieve this

Explicit equality proofs Definitional equality (reduction)

rtauto arith

JgKtauto?

JgKarith ✓
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Composable Automation

Explicit casts

Ha : castpfP A
Hb : castpfP B
===================
castpfP (A ∧ B)

Composable only when proofs
match up exactly

Ha : castpfP A
===================
castpfQ A

✓ Very flexible

7 Verbose

Var tyProp : typ.
Var sTr sAnd : sym.

Def rtauto (g : expr) : bool :=
match g with
| XsTr ⇒ true
| XsAnd @ l @ r⇒
rtauto l && rtauto r

| _⇒ false
end.

Var pfP : J tyProp K = Prop.
Var pfTr : JsTrKtyProp = True.
Var pfAnd : JsAndK... = ∧.

Thm rtauto_sound
: ∀ g, rtauto g = true→J g KtyProp.
Proof. ... Qed.

Language Symbols

Reflective Procedure

Soundness Proof
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Proof. ... Qed.

Language Symbols

Reflective Procedure

Soundness Proof

Type Error!JtyPropK ̸≡ Prop
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Composing Reflective Automation

λ ∧ +,=( ),

Must agree on overlap

Two ways to achieve this

Explicit equality proofs Definitional equality (reduction)

rtauto arith

JgKtauto?

JgKarith ✓
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Composition with Environments
Let tyProp := T0. (* typ *)
Let sTr := X0.
Let sAnd := X1.

Def rtauto (g : expr) : bool :=
match g with
| XsTr ⇒ true
| XsAnd @ l @ r⇒
rtauto l && rtauto r

| _⇒ false
end.

Var ts : list Type.
Var fs : list ...

Thm rtauto_sound
: ∀ g, rtauto g = true→

ts
fsJ g KtyProp.

Proof. ... Qed.

Var ts : list Type.

Let c :=

Thm rtauto_sound
: ∀ g, rtauto g = true→

ts
fsJ g KtyProp.

Proof. ... Qed.

Use numbers

and environments

passed to J K

τ0 τ1 τ2 ...
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Proof. ... Qed.

Var ts : list Type.

Let c :=

Thm rtauto_sound
: ∀ g, rtauto g = true→

ts⊕c
fs J g KtyProp.
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τ0 τ1 τ2 ...
⊕

P ? ? ...
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Generic Reflective Automation

Some tasks are very easy to automate

⊢ x ∈ ({x ,y}∪{z})

LEM2
⊢ x ∈ {x ,y}

LEM3

⊢ x = x

Proof

s

∀aB C,
a ∈ B →
a ∈ (B ∪ C)

What expressions make the
conclusion match the goal?

Unification

“Hint Database”

auto
autorewrite

Generic procedures make it easy
to quickly build simple automation
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Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.
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BEDROCK: Composablity, Customizability & Scalability

BEDROCK [Chl11] is a Coq library for imperative program verification.
Verified thousands of lines of low-level code!

Basic data structures [MCB14]
Garbage Collector
Thread library and Web server [Chl15]
Robot Operating System [Chl15]

Reasonable proof burden.

Module Program Invar. Tactics Other Ratio
LinkedList 42 26 27 31 2.0
Malloc 43 16 112 94 5.2
ListSet 50 31 23 46 2.0
TreeSet 108 40 25 45 1.0
Queue 53 22 80 93 3.7
Memoize 26 13 56 50 4.6

“Overhead of verification”

< 20x
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BEDROCK: Macro Performance

Does open computational reflection make verification faster? Yes

Does it make verification fast? Reasonably

VC-gen HO Sym Eval HO Entailment

5% 4%
16%15%†

56%†

%
Ti

m
e

S
pe

nt

∼ 29% reflective automation
∼ 71% Ltac

† The division of the 71% is for illustrative purposes only, the results simply states that

71% of the total time is spent in Ltac .
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BEDROCK: Customizability & Performance

Customizability is essential for good performance.

{...}−
{...}c3

{...}c2;c3

{x 7→ (l,n)∗ llist ls′ n}c2;c3

{x ̸= 0∧ llist ls x}c2;c3

{llist ls x}c1;c2;c3

Linked List Length
int length(llist∗ x) {
int n = 0;
while (x ̸= 0) { // c1

/* <loop invariant> */
n = n + 1; // c2

x = x→next; // c3

}
return n;

}

Time (sec)

w/ Custom

w/o Custom

0.38

0.30 0.89 0.58 1.77s

∼5x faster Reflective
Ltac

Cost for entering
“reflected” world
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Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.
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A Whole Range of Reflective Procedures

Build a language/library for writing/composing reflective procedures

Capture backtracking proof search (similar to Ltac)

Fix verify p c :=
match c with
| Write p v⇒
(* apply write lemma *)

| Read v e⇒
(* apply read lemma *)

| ...
end.

Fix use_hints hints goal :=
match hints with
| [] ⇒ false
| h :: hs⇒
(* apply h and recurse

* or

* try the remaining hints

*)
end.

Complex Simple

Arith
Permutations

Sets
Lists

Combining rich procedures

Quantifiers & hypotheses
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Program Verification using Combinators

Ltac Automation
Ltac verify := repeat first

[ eapply step_read ; [ | side_condition ]
| ...
| tauto ].

Rtac Automation†

Def verify := repeat10 first
[ eapply step_read_syn ; [ | side_condition ]
| ...
| rtauto ].

Thm verify_sound : rtac_sound verify.
Proof. derive soundness; ... Qed.

Functions

Proof checked
once and for all

Soundness derived composablely

Builds the generic proof
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Verifying Rtac: Soundly Assembling Proofs

?Q = P →

{llistx ls}c1;c2;c3{?Q}
llistx ls ⊢ ∃l ls n, ...

?Q = P →

{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →

{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →

∀l ls n,{x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

Local Reasoning
Combine matching proofs

?Q = P →

{P}−{?Q}
?Q = P P ⊢?Q

Global Reasoning
Instantiate unification variable

Propagate through the entire proof!

Ensure that the choice is
valid in the stronger context

Reason under binders

Phase-split: Object-level terms
must not affect Rtac invariants

(

False → 1 = 2

)

∧Rtac-inv

“Free” unification variables

Parallel obligationsParallel obligations
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Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.
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Enriching the Framework

λ

λP

λ2

λω

λω

Like HOL

λPω

λP2 λPω

Like Coq

The Lambda Cube

Polymorphism ✓
“Fake it” with specialized term algebras.
Details in thesis.

7 Do not support type variables.

Type Functions ✓
“Fake it” with specialized type algebras
Details in thesis.

Term Dependency 7

7 Cyclic dependency between types and
terms!
Open problem with interesting
ramifications

Topology [Shu14]
Lots of work [Dan07, Cha09, McB10]

Enriched Theories | Extensible Proof Engineering in Intensional Type Theory 27 / 29



Enriching the Framework

λ

λP

λ2

λω

λω

Like HOL

λPω

λP2 λPω

Like Coq

The Lambda Cube

Polymorphism ✓
“Fake it” with specialized term algebras.
Details in thesis.

7 Do not support type variables.

Type Functions ✓
“Fake it” with specialized type algebras
Details in thesis.

Term Dependency 7

7 Cyclic dependency between types and
terms!
Open problem with interesting
ramifications

Topology [Shu14]
Lots of work [Dan07, Cha09, McB10]

Enriched Theories | Extensible Proof Engineering in Intensional Type Theory 27 / 29



Enriching the Framework

λ

λP

λ2

λω

λω

Like HOL

λPω

λP2 λPω

Like Coq

The Lambda Cube

Polymorphism ✓
“Fake it” with specialized term algebras.
Details in thesis.

7 Do not support type variables.

Type Functions ✓
“Fake it” with specialized type algebras
Details in thesis.

Term Dependency 7

7 Cyclic dependency between types and
terms!
Open problem with interesting
ramifications

Topology [Shu14]
Lots of work [Dan07, Cha09, McB10]

Enriched Theories | Extensible Proof Engineering in Intensional Type Theory 27 / 29



Enriching the Framework

λ

λP

λ2

λω

λω

Like HOL

λPω

λP2 λPω

Like Coq

The Lambda Cube

Polymorphism ✓
“Fake it” with specialized term algebras.
Details in thesis.

7 Do not support type variables.

Type Functions ✓
“Fake it” with specialized type algebras
Details in thesis.

Term Dependency 7

7 Cyclic dependency between types and
terms!
Open problem with interesting
ramifications

Topology [Shu14]
Lots of work [Dan07, Cha09, McB10]

Enriched Theories | Extensible Proof Engineering in Intensional Type Theory 27 / 29



Enriching the Framework

λ

λP

λ2

λω

λω

Like HOL

λPω

λP2 λPω

Like Coq

The Lambda Cube

Polymorphism ✓
“Fake it” with specialized term algebras.
Details in thesis.

7 Do not support type variables.

Type Functions ✓
“Fake it” with specialized type algebras
Details in thesis.

Term Dependency 7

7 Cyclic dependency between types and
terms!
Open problem with interesting
ramifications

Topology [Shu14]
Lots of work [Dan07, Cha09, McB10]

Enriched Theories | Extensible Proof Engineering in Intensional Type Theory 27 / 29



Enriching the Framework

λ

λP

λ2

λω

λω

Like HOL

λPω

λP2 λPω

Like Coq

The Lambda Cube

Polymorphism ✓
“Fake it” with specialized term algebras.
Details in thesis.

7 Do not support type variables.

Type Functions ✓
“Fake it” with specialized type algebras
Details in thesis.

Term Dependency 7

7 Cyclic dependency between types and
terms!
Open problem with interesting
ramifications

Topology [Shu14]
Lots of work [Dan07, Cha09, McB10]

Enriched Theories | Extensible Proof Engineering in Intensional Type Theory 27 / 29



Revisiting the Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.
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Thank You

Greg Morrisett Adam Chlipala Stephen Chong

Thomas Braibant Jesper Bengtson Ryan Wisnesky

Elizabeth Malecha

Mom & Dad

MD 309, PLV@MIT, Antonis Stampoulis, Uri Braun
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