
Extensible Proof Engineering in Intensional Type Theory

Gregory Malecha
gmalecha@cs.harvard.edu

PhD Defense
Harvard SEAS

February 2, 2015

| Extensible Proof Engineering in Intensional Type Theory 1 / 29

Mechanized Reasoning Tools

Mathematics

Proofs

Software

Compilers Analyzers Verifiers

.c .c

.c

✓

.c

✓

Theorems

How can we build these?

Motivation | Extensible Proof Engineering in Intensional Type Theory 2 / 29

Mechanized Reasoning Tools

Mathematics

Proofs

Software

Compilers Analyzers Verifiers

.c .c

.c

✓

.c

✓

Theorems

How can we build these?

Motivation | Extensible Proof Engineering in Intensional Type Theory 2 / 29

Mechanized Reasoning Tools

Mathematics

Proofs

Software

Compilers

Analyzers Verifiers

.c .c

.o

✓

.o

✓

Optimizations

How can we build these?

Motivation | Extensible Proof Engineering in Intensional Type Theory 2 / 29

Mechanized Reasoning Tools

Mathematics

Proofs

Software

Compilers Analyzers

Verifiers

.c .c

.c✓

.c✓
Domains

Heuristics

How can we build these?

Motivation | Extensible Proof Engineering in Intensional Type Theory 2 / 29

Mechanized Reasoning Tools

Mathematics

Proofs

Software

Compilers Analyzers Verifiers

.c .c

.c✓

.c✓
Theorems

Heuristics

Invariants

How can we build these?

Motivation | Extensible Proof Engineering in Intensional Type Theory 2 / 29

Mechanized Reasoning Tools

Mathematics

Proofs

Software

Compilers Analyzers Verifiers

.c .c

.c✓

.c✓
Theorems

Heuristics

Invariants

How can we build these?

Motivation | Extensible Proof Engineering in Intensional Type Theory 2 / 29

Mechanized Reasoning Tools

Mathematics

Proofs

Software

Compilers Analyzers Verifiers

.c .c

.c✓

.c✓
Theorems

Heuristics

Invariants

How can we build these?

Motivation | Extensible Proof Engineering in Intensional Type Theory 2 / 29

Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.

Motivation | Extensible Proof Engineering in Intensional Type Theory 3 / 29

Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.

Motivation | Extensible Proof Engineering in Intensional Type Theory 3 / 29

Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.

Motivation | Extensible Proof Engineering in Intensional Type Theory 3 / 29

Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.

Motivation | Extensible Proof Engineering in Intensional Type Theory 3 / 29

Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.

Motivation | Extensible Proof Engineering in Intensional Type Theory 3 / 29

Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.

Motivation | Extensible Proof Engineering in Intensional Type Theory 3 / 29

Trustworthiness from a Logic

Nuprl

Coq

Agda

Andromeda

HOL

LF/ELF/TWELF

CompCert

Feit Thompson

CertiKOS

Ynot

Bedrock

Net Stack

seL4

GCs

ML compiler

FPUs/CPUs

The Foundations | Extensible Proof Engineering in Intensional Type Theory 4 / 29

Trustworthiness from a Logic

Nuprl

Coq

Agda

Andromeda

HOL

LF/ELF/TWELF

CompCert

Feit Thompson

CertiKOS

Ynot

Bedrock

Net Stack

seL4

GCs

ML compiler

FPUs/CPUs

Foundational

Small kernel
(DeBruijn criterion)

The Foundations | Extensible Proof Engineering in Intensional Type Theory 4 / 29

Foundational Proofs for Simple Entailments

A∧ (B∧C) ⊢ A∧ (B∧C)
∧-ASSOC

A∧ (B∧C) ⊢ (A∧B)∧C
∧-COMM

A∧ (B∧C) ⊢ C ∧ (A∧B)
∧-COMM

A∧ (B∧C) ⊢ C ∧ (B∧A)

Ltac Automation
Ltac my_tauto := repeat

first [reflexivity
| apply ∧-Comm
| apply ∧-Assoc
| ...].

Proof tree

Foundational proofs require
that we make all steps explicit.

builds

Still have to build & check the proof

Kernel cannot use custom algorithms!

The Foundations | Extensible Proof Engineering in Intensional Type Theory 5 / 29

Foundational Proofs for Simple Entailments

A∧ (B∧C) ⊢ A∧ (B∧C)
∧-ASSOC

A∧ (B∧C) ⊢ (A∧B)∧C
∧-COMM

A∧ (B∧C) ⊢ C ∧ (A∧B)
∧-COMM

A∧ (B∧C) ⊢ C ∧ (B∧A)

Ltac Automation
Ltac my_tauto := repeat

first [reflexivity
| apply ∧-Comm
| apply ∧-Assoc
| ...].

Proof tree

Foundational proofs require
that we make all steps explicit.

builds

Still have to build & check the proof

Kernel cannot use custom algorithms!

The Foundations | Extensible Proof Engineering in Intensional Type Theory 5 / 29

Foundational Proofs for Simple Entailments

A∧ (B∧C) ⊢ A∧ (B∧C)
∧-ASSOC

A∧ (B∧C) ⊢ (A∧B)∧C
∧-COMM

A∧ (B∧C) ⊢ C ∧ (A∧B)
∧-COMM

A∧ (B∧C) ⊢ C ∧ (B∧A)

Ltac Automation
Ltac my_tauto := repeat

first [reflexivity
| apply ∧-Comm
| apply ∧-Assoc
| ...].

Foundational proofs require
that we make all steps explicit.

builds

Still have to build & check the proof

Kernel cannot use custom algorithms!

The Foundations | Extensible Proof Engineering in Intensional Type Theory 5 / 29

Foundational Proofs for Simple Entailments

A∧ (B∧C) ⊢ A∧ (B∧C)
∧-ASSOC

A∧ (B∧C) ⊢ (A∧B)∧C
∧-COMM

A∧ (B∧C) ⊢ C ∧ (A∧B)
∧-COMM

A∧ (B∧C) ⊢ C ∧ (B∧A)

Ltac Automation
Ltac my_tauto := repeat

first [reflexivity
| apply ∧-Comm
| apply ∧-Assoc
| ...].

Foundational proofs require
that we make all steps explicit.

builds

Still have to build & check the proof

Kernel cannot use custom algorithms!

The Foundations | Extensible Proof Engineering in Intensional Type Theory 5 / 29

Foundational Proofs for Simple Entailments

A∧ (B∧C) ⊢ A∧ (B∧C)
∧-ASSOC

A∧ (B∧C) ⊢ (A∧B)∧C
∧-COMM

A∧ (B∧C) ⊢ C ∧ (A∧B)
∧-COMM

A∧ (B∧C) ⊢ C ∧ (B∧A)

Ltac Automation
Ltac my_tauto := repeat

first [reflexivity
| apply ∧-Comm
| apply ∧-Assoc
| ...].

Foundational proofs require
that we make all steps explicit.

builds

Still have to build & check the proof

Kernel cannot use custom algorithms!

The Foundations | Extensible Proof Engineering in Intensional Type Theory 5 / 29

Trustworthiness from a Logic

Nuprl

Coq

Agda

Andromeda

HOL

LF/ELF/TWELF

CompCert

Feit Thompson

CertiKOS

Ynot

Bedrock

Net Stack

seL4

GCs

ML compiler

FPUs/CPUs

Foundational

Small kernel
(DeBruijn criterion)

The Foundations | Extensible Proof Engineering in Intensional Type Theory 6 / 29

Trustworthiness from a Logic

Nuprl

Coq

Agda

Andromeda

HOL

LF/ELF/TWELF

CompCert

Feit Thompson

CertiKOS

Ynot

Bedrock

Net Stack

seL4

GCs

ML compiler

FPUs/CPUs

Foundational

Small kernel
(DeBruijn criterion)

Decidable Undecidable

ExtensionalIntensional

The Foundations | Extensible Proof Engineering in Intensional Type Theory 6 / 29

Computation in Logic/Type Theory

CONV†

⊢ P

⊢ QP ≡ Q

⊢ P = Q

Ext. Type Theory

P =⇒∗ Q

Int. Type Theory

Many steps!

Meta-logic equality

† Abbreviated from the actual type theory rule.

The Foundations | Extensible Proof Engineering in Intensional Type Theory 7 / 29

Computation in Logic/Type Theory

CONV†

⊢ P

⊢ QP ≡ Q

⊢ P = Q

Ext. Type Theory

P =⇒∗ Q

Int. Type Theory

Many steps!

Meta-logic equality

† Abbreviated from the actual type theory rule.

The Foundations | Extensible Proof Engineering in Intensional Type Theory 7 / 29

Computation in Logic/Type Theory

CONV†

⊢ P

⊢ QP ≡ Q

⊢ P = Q

Ext. Type Theory

P =⇒∗ Q

Int. Type Theory

Execute the term

Meta-logic equality

† Abbreviated from the actual type theory rule.

The Foundations | Extensible Proof Engineering in Intensional Type Theory 7 / 29

Trustworthiness from a Logic

Nuprl

Coq

Agda

Andromeda

HOL

LF/ELF/TWELF

CompCert

Feit Thompson

CertiKOS

Ynot

Bedrock

Net Stack

seL4

GCs

ML compiler

FPUs/CPUs

Foundational

Small kernel
(DeBruijn criterion)

Decidable Undecidable

ExtensionalIntensional

The Foundations | Extensible Proof Engineering in Intensional Type Theory 8 / 29

Trustworthiness from a Logic

Nuprl

Coq

Agda

Andromeda

HOL

LF/ELF/TWELF

CompCert

Feit Thompson

CertiKOS

Ynot

Bedrock

Net Stack

seL4

GCs

ML compiler

FPUs/CPUs

Foundational

Small kernel
(DeBruijn criterion)

Decidable Undecidable
Simple(r) Types Dependent Types

Computational

Use this to compress proofs

The Foundations | Extensible Proof Engineering in Intensional Type Theory 8 / 29

Trustworthiness from a Logic

Nuprl

Coq

Agda

Andromeda

HOL

LF/ELF/TWELF

CompCert

Feit Thompson

CertiKOS

Ynot

Bedrock

Net Stack

seL4

GCs

ML compiler

FPUs/CPUs

Foundational

Small kernel
(DeBruijn criterion)

Decidable Undecidable
Simple(r) Types Dependent Types

Computational

Use this to compress proofs

The Foundations | Extensible Proof Engineering in Intensional Type Theory 8 / 29

Computation in Logic/Type Theory

CONV†

⊢ P

⊢ QP ≡ Q

⊢ P = Q

Ext. Type Theory

P =⇒∗ Q

Int. Type Theory

Many steps!

Meta-logic equality

† Abbreviated from the actual type theory rule.

The Foundations | Extensible Proof Engineering in Intensional Type Theory 9 / 29

Computational Reflection [Bou97]

Thm rtauto_sound : ∀ g,
rtauto g = true→ J g KProp.

Proof. ... Qed.

A∧ (B∧C) ⊢ C ∧ (B∧A)

A∧ (B∧C) ⊢ C ∧ (A∧B)

A∧ (B∧C) ⊢ (A∧B)∧C

A∧ (B∧C) ⊢ A∧ (B∧C)

Syntactic Semantic

JA∧(B∧C) ⊢ C∧(B∧A)KProp

CONV

rtauto(A∧(B∧C) ⊢ C∧(B∧A))=true

true = true
Function

Soundness proof

Small proof, custom algorithm Large proof

The Foundations | Extensible Proof Engineering in Intensional Type Theory 10 / 29

Computational Reflection [Bou97]

Thm rtauto_sound : ∀ g,
rtauto g = true→ J g KProp.

Proof. ... Qed.

A∧ (B∧C) ⊢ C ∧ (B∧A)

A∧ (B∧C) ⊢ C ∧ (A∧B)

A∧ (B∧C) ⊢ (A∧B)∧C

A∧ (B∧C) ⊢ A∧ (B∧C)

Syntactic Semantic

JA∧(B∧C) ⊢ C∧(B∧A)KProp

CONV

rtauto(A∧(B∧C) ⊢ C∧(B∧A))=true

true = true
Function

Soundness proof

Small proof, custom algorithm Large proof

The Foundations | Extensible Proof Engineering in Intensional Type Theory 10 / 29

Computational Reflection [Bou97]

Thm rtauto_sound : ∀ g,
rtauto g = true→ J g KProp.

Proof. ... Qed.

A∧ (B∧C) ⊢ C ∧ (B∧A)

A∧ (B∧C) ⊢ C ∧ (A∧B)

A∧ (B∧C) ⊢ (A∧B)∧C

A∧ (B∧C) ⊢ A∧ (B∧C)

Syntactic Semantic

JA∧(B∧C) ⊢ C∧(B∧A)KProp

CONV

rtauto(A∧(B∧C) ⊢ C∧(B∧A))=true

true = true
Function

Soundness proof

Small proof, custom algorithm Large proof

The Foundations | Extensible Proof Engineering in Intensional Type Theory 10 / 29

Computational Reflection [Bou97]

Thm rtauto_sound : ∀ g,
rtauto g = true→ J g KProp.

Proof. ... Qed.

A∧ (B∧C) ⊢ C ∧ (B∧A)

A∧ (B∧C) ⊢ C ∧ (A∧B)

A∧ (B∧C) ⊢ (A∧B)∧C

A∧ (B∧C) ⊢ A∧ (B∧C)

Syntactic Semantic

JA∧(B∧C) ⊢ C∧(B∧A)KProp

CONV

rtauto(A∧(B∧C) ⊢ C∧(B∧A))=true

true = true
Function

Soundness proof

Small proof, custom algorithm Large proof

The Foundations | Extensible Proof Engineering in Intensional Type Theory 10 / 29

Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.

The Foundations | Extensible Proof Engineering in Intensional Type Theory 11 / 29

Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.

The Foundations | Extensible Proof Engineering in Intensional Type Theory 11 / 29

Composing Reflective Procedures

Logic Arithmetic Logic+Arith
rtauto arith rtauto_arith

⊕ =

True∧X a+b=b+a True∧(a+b=b+a)

p ::= True | p1∧p2
p ::= a1=a2
a ::= a1+a2

Datatypes a.la. carte [Swi08]
Metatheory a.la. carte [DdSOS13]

λ (X)
t ::= T# | t1→t2
e ::= X# | e1@e2 | λ t.e | xn

X∧ @XTrue @
(X= @ (X+ @a @b)

@ (X+ @b @a))

Semantic

Define independently Soundness theorems
reason about the
denotation function

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 12 / 29

Composing Reflective Procedures

Logic Arithmetic Logic+Arith
rtauto arith rtauto_arith⊕ =

True∧X a+b=b+a True∧(a+b=b+a)

p ::= True | p1∧p2
p ::= a1=a2
a ::= a1+a2

Datatypes a.la. carte [Swi08]
Metatheory a.la. carte [DdSOS13]

λ (X)
t ::= T# | t1→t2
e ::= X# | e1@e2 | λ t.e | xn

X∧ @XTrue @
(X= @ (X+ @a @b)

@ (X+ @b @a))

Semantic

Define independently Soundness theorems
reason about the
denotation function

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 12 / 29

Composing Reflective Procedures

Logic Arithmetic Logic+Arith
rtauto arith rtauto_arith⊕ =

True∧X a+b=b+a True∧(a+b=b+a)

p ::= True | p1∧p2
p ::= a1=a2
a ::= a1+a2

Datatypes a.la. carte [Swi08]
Metatheory a.la. carte [DdSOS13]

λ (X)
t ::= T# | t1→t2
e ::= X# | e1@e2 | λ t.e | xn

X∧ @XTrue @
(X= @ (X+ @a @b)

@ (X+ @b @a))

Semantic

Define independently Soundness theorems
reason about the
denotation function

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 12 / 29

Composing Reflective Procedures

Logic Arithmetic Logic+Arith
rtauto arith rtauto_arith⊕ =

True∧X a+b=b+a True∧(a+b=b+a)

p r ::= True | r∧r p ::= a1=a2
ar ::= r+r

Datatypes a.la. carte [Swi08]
Metatheory a.la. carte [DdSOS13]

λ (X)
t ::= T# | t1→t2
e ::= X# | e1@e2 | λ t.e | xn

X∧ @XTrue @
(X= @ (X+ @a @b)

@ (X+ @b @a))

Semantic

Define independently Soundness theorems
reason about the
denotation function

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 12 / 29

Composing Reflective Procedures

Logic Arithmetic Logic+Arith
rtauto arith rtauto_arith⊕ =

True∧X a+b=b+a True∧(a+b=b+a)

p ::= True | p1∧p2
p ::= a1=a2
a ::= a1+a2

Datatypes a.la. carte [Swi08]
Metatheory a.la. carte [DdSOS13]

λ (X)
t ::= T# | t1→t2
e ::= X# | e1@e2 | λ t.e | xn

X∧ @XTrue @
(X= @ (X+ @a @b)

@ (X+ @b @a))

Key Insight!

Semantic

Define independently Soundness theorems
reason about the
denotation function

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 12 / 29

Composing Reflective Procedures

Logic Arithmetic Logic+Arith
rtauto arith rtauto_arith⊕ =

True∧X a+b=b+a True∧(a+b=b+a)

p ::= True | p1∧p2
p ::= a1=a2
a ::= a1+a2

Datatypes a.la. carte [Swi08]
Metatheory a.la. carte [DdSOS13]

λ (X)
t ::= T# | t1→t2
e ::= X# | e1@e2 | λ t.e | xn

X∧ @XTrue @
(X= @ (X+ @a @b)

@ (X+ @b @a))

Semantic

Define independently

Soundness theorems
reason about the
denotation function

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 12 / 29

Composing Reflective Procedures

Logic Arithmetic Logic+Arith
rtauto arith rtauto_arith⊕ =

True∧X a+b=b+a True∧(a+b=b+a)

p ::= True | p1∧p2
p ::= a1=a2
a ::= a1+a2

Datatypes a.la. carte [Swi08]
Metatheory a.la. carte [DdSOS13]

λ (X)
t ::= T# | t1→t2
e ::= X# | e1@e2 | λ t.e | xn

X∧ @XTrue @
(X= @ (X+ @a @b)

@ (X+ @b @a))

Semantic

Define independently Soundness theorems
reason about the
denotation function

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 12 / 29

Composing Reflective Automation

λ ∧ +,=(),

Must agree on overlap

Two ways to achieve this

Explicit equality proofs Definitional equality (reduction)

rtauto arith

JgKtauto?

JgKarith ✓

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 13 / 29

Composing Reflective Automation

λ ∧ +,=(),

Must agree on overlap

Two ways to achieve this

Explicit equality proofs Definitional equality (reduction)

rtauto arith

JgKtauto?

JgKarith ✓

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 13 / 29

Composing Reflective Automation

λ ∧ +,=(),

Must agree on overlap

Two ways to achieve this

Explicit equality proofs Definitional equality (reduction)

rtauto arith

JgKtauto?

JgKarith ✓

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 13 / 29

Composing Reflective Automation

λ ∧ +,=(),

Must agree on overlap

Two ways to achieve this

Explicit equality proofs Definitional equality (reduction)

rtauto arith

JgKtauto?

JgKarith ✓

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 13 / 29

Composing Reflective Automation

λ ∧ +,=(),

Must agree on overlap

Two ways to achieve this

Explicit equality proofs Definitional equality (reduction)

rtauto arith

JgKtauto?

JgKarith ✓

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 13 / 29

Composing Reflective Automation

λ ∧ +,=(),

Must agree on overlap

Two ways to achieve this

Explicit equality proofs Definitional equality (reduction)

rtauto arith

JgKtauto?

JgKarith ✓

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 13 / 29

Composable Automation

Explicit casts

Ha : castpfP A
Hb : castpfP B
===================
castpfP (A ∧ B)

Composable only when proofs
match up exactly

Ha : castpfP A
===================
castpfQ A

✓ Very flexible

7 Verbose

Var tyProp : typ.
Var sTr sAnd : sym.

Def rtauto (g : expr) : bool :=
match g with
| XsTr ⇒ true
| XsAnd @ l @ r⇒
rtauto l && rtauto r

| _⇒ false
end.

Var pfP : J tyProp K = Prop.
Var pfTr : JsTrKtyProp = True.
Var pfAnd : JsAndK... = ∧.

Thm rtauto_sound
: ∀ g, rtauto g = true→J g KtyProp.
Proof. ... Qed.

Language Symbols

Reflective Procedure

Soundness Proof

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 14 / 29

Composable Automation

Explicit casts

Ha : castpfP A
Hb : castpfP B
===================
castpfP (A ∧ B)

Composable only when proofs
match up exactly

Ha : castpfP A
===================
castpfQ A

✓ Very flexible

7 Verbose

Var tyProp : typ.
Var sTr sAnd : sym.

Def rtauto (g : expr) : bool :=
match g with
| XsTr ⇒ true
| XsAnd @ l @ r⇒
rtauto l && rtauto r

| _⇒ false
end.

Var pfP : J tyProp K = Prop.
Var pfTr : JsTrKtyProp = True.
Var pfAnd : JsAndK... = ∧.

Thm rtauto_sound
: ∀ g, rtauto g = true→J g KtyProp.
Proof. ... Qed.

Language Symbols

Reflective Procedure

Soundness Proof

Language Constraints

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 14 / 29

Composable Automation

Explicit casts

Ha : castpfP A
Hb : castpfP B
===================
castpfP (A ∧ B)

Composable only when proofs
match up exactly

Ha : castpfP A
===================
castpfQ A

✓ Very flexible

7 Verbose

Var tyProp : typ.
Var sTr sAnd : sym.

Def rtauto (g : expr) : bool :=
match g with
| XsTr ⇒ true
| XsAnd @ l @ r⇒
rtauto l && rtauto r

| _⇒ false
end.

Var pfP : J tyProp K = Prop.
Var pfTr : JsTrKtyProp = True.
Var pfAnd : JsAndK... = ∧.

Thm rtauto_sound
: ∀ g, rtauto g = true→J g KtyProp.
Proof. ... Qed.

Language Symbols

Reflective Procedure

Soundness Proof

Type Error!JtyPropK ̸≡ Prop

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 14 / 29

Composable Automation

Explicit casts

Ha : castpfP A
Hb : castpfP B
===================
castpfP (A ∧ B)

Composable only when proofs
match up exactly

Ha : castpfP A
===================
castpfQ A

✓ Very flexible

7 Verbose

Var tyProp : typ.
Var sTr sAnd : sym.

Def rtauto (g : expr) : bool :=
match g with
| XsTr ⇒ true
| XsAnd @ l @ r⇒
rtauto l && rtauto r

| _⇒ false
end.

Var pfP : J tyProp K = Prop.
Var pfTr : castpfP JsTrKtyProp = True.
Var pfAnd : castpfP JsAndK... = ∧.

Thm rtauto_sound
: ∀ g, rtauto g = true→
castpfP J g KtyProp.

Proof. ... Qed.

Language Symbols

Reflective Procedure

Soundness Proof

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 14 / 29

Composable Automation

Explicit casts

Ha : castpfP A
Hb : castpfP B
===================
castpfP (A ∧ B)

Composable only when proofs
match up exactly

Ha : castpfP A
===================
castpfQ A

✓ Very flexible

7 Verbose

Var tyProp : typ.
Var sTr sAnd : sym.

Def rtauto (g : expr) : bool :=
match g with
| XsTr ⇒ true
| XsAnd @ l @ r⇒
rtauto l && rtauto r

| _⇒ false
end.

Var pfP : J tyProp K = Prop.
Var pfTr : castpfP JsTrKtyProp = True.
Var pfAnd : castpfP JsAndK... = ∧.

Thm rtauto_sound
: ∀ g, rtauto g = true→
castpfP J g KtyProp.

Proof. ... Qed.

Language Symbols

Reflective Procedure

Soundness Proof

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 14 / 29

Composing Reflective Automation

λ ∧ +,=(),

Must agree on overlap

Two ways to achieve this

Explicit equality proofs Definitional equality (reduction)

rtauto arith

JgKtauto?

JgKarith ✓

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 15 / 29

Composition with Environments
Let tyProp := T0. (* typ *)
Let sTr := X0.
Let sAnd := X1.

Def rtauto (g : expr) : bool :=
match g with
| XsTr ⇒ true
| XsAnd @ l @ r⇒
rtauto l && rtauto r

| _⇒ false
end.

Var ts : list Type.
Var fs : list ...

Thm rtauto_sound
: ∀ g, rtauto g = true→

ts
fsJ g KtyProp.

Proof. ... Qed.

Var ts : list Type.

Let c :=

Thm rtauto_sound
: ∀ g, rtauto g = true→

ts
fsJ g KtyProp.

Proof. ... Qed.

Use numbers

and environments

passed to J K

τ0 τ1 τ2 ...

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 16 / 29

Composition with Environments
Let tyProp := T0. (* typ *)
Let sTr := X0.
Let sAnd := X1.

Def rtauto (g : expr) : bool :=
match g with
| XsTr ⇒ true
| XsAnd @ l @ r⇒
rtauto l && rtauto r

| _⇒ false
end.

Var ts : list Type.
Var fs : list ...

Thm rtauto_sound
: ∀ g, rtauto g = true→

ts
fsJ g KtyProp.

Proof. ... Qed.

Var ts : list Type.

Let c :=

Thm rtauto_sound
: ∀ g, rtauto g = true→

ts
fsJ g KtyProp.

Proof. ... Qed.

τ0 τ1 τ2 ...

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 16 / 29

Composition with Environments
Let tyProp := T0. (* typ *)
Let sTr := X0.
Let sAnd := X1.

Def rtauto (g : expr) : bool :=
match g with
| XsTr ⇒ true
| XsAnd @ l @ r⇒
rtauto l && rtauto r

| _⇒ false
end.

Var ts : list Type.
Var fs : list ...

Thm rtauto_sound
: ∀ g, rtauto g = true→

ts
fsJ g KtyProp.

Proof. ... Qed.

Var ts : list Type.

Let c :=

Thm rtauto_sound
: ∀ g, rtauto g = true→

ts
fsJ g KtyProp.

Proof. ... Qed.

τ0 τ1 τ2 ...

JT0K ̸≡ P7

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 16 / 29

Composition with Environments
Let tyProp := T0. (* typ *)
Let sTr := X0.
Let sAnd := X1.

Def rtauto (g : expr) : bool :=
match g with
| XsTr ⇒ true
| XsAnd @ l @ r⇒
rtauto l && rtauto r

| _⇒ false
end.

Var ts : list Type.
Var fs : list ...

Thm rtauto_sound
: ∀ g, rtauto g = true→

ts
fsJ g KtyProp.

Proof. ... Qed.

Var ts : list Type.

Let c :=

Thm rtauto_sound
: ∀ g, rtauto g = true→

ts
fsJ g KtyProp.

Proof. ... Qed.

P B N

JT0K ≡ P✓

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 16 / 29

Composition with Environments
Let tyProp := T0. (* typ *)
Let sTr := X0.
Let sAnd := X1.

Def rtauto (g : expr) : bool :=
match g with
| XsTr ⇒ true
| XsAnd @ l @ r⇒
rtauto l && rtauto r

| _⇒ false
end.

Var ts : list Type.
Var fs : list ...

Thm rtauto_sound
: ∀ g, rtauto g = true→

ts⊕c
fs J g KtyProp.

Proof. ... Qed.

Var ts : list Type.

Let c :=

Thm rtauto_sound
: ∀ g, rtauto g = true→

ts⊕c
fs J g KtyProp.

Proof. ... Qed.

τ0 τ1 τ2 ...
⊕

P ? ? ...
≡

P τ1 τ2 ...

JT0K ≡ P✓

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 16 / 29

Generic Reflective Automation

Some tasks are very easy to automate

⊢ x ∈ ({x ,y}∪{z})

LEM2
⊢ x ∈ {x ,y}

LEM3

⊢ x = x

Proof

s

∀aB C,
a ∈ B →
a ∈ (B ∪ C)

What expressions make the
conclusion match the goal?

Unification

“Hint Database”

auto
autorewrite

Generic procedures make it easy
to quickly build simple automation

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 17 / 29

Generic Reflective Automation

Some tasks are very easy to automate

⊢ x ∈ ({x ,y}∪{z})
LEM2

⊢ x ∈ {x ,y}

LEM3
⊢ x = x

Proof

s

∀aB C,
a ∈ B →
a ∈ (B ∪ C)

What expressions make the
conclusion match the goal?

Unification

“Hint Database”

auto
autorewrite

Generic procedures make it easy
to quickly build simple automation

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 17 / 29

Generic Reflective Automation

Some tasks are very easy to automate

⊢ x ∈ ({x ,y}∪{z})
LEM2

⊢ x ∈ {x ,y}

LEM3
⊢ x = x

Syntax Proof

s

∀aB C,
a ∈ B →
a ∈ (B ∪ C)

What expressions make the
conclusion match the goal?

Unification

“Hint Database”

auto
autorewrite

Generic procedures make it easy
to quickly build simple automation

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 17 / 29

Generic Reflective Automation

Some tasks are very easy to automate

⊢ x ∈ ({x ,y}∪{z})
LEM2

⊢ x ∈ {x ,y}

LEM3
⊢ x = x

Syntax Proof

s

∀aB C,
?a ∈ ?B →
?a ∈ (?B ∪ ?C)

What expressions make the
conclusion match the goal?

Unification

“Hint Database”

auto
autorewrite

Generic procedures make it easy
to quickly build simple automation

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 17 / 29

Generic Reflective Automation

Some tasks are very easy to automate

⊢ x ∈ ({x ,y}∪{z})
LEM2

⊢ x ∈ {x ,y}
LEM3

⊢ x = x

Syntax Proofs

∀aB C,
?a ∈ ?B →
?a ∈ (?B ∪ ?C)

What expressions make the
conclusion match the goal?

Unification

“Hint Database”

auto
autorewrite

Generic procedures make it easy
to quickly build simple automation

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 17 / 29

Generic Reflective Automation

Some tasks are very easy to automate

⊢ x ∈ ({x ,y}∪{z})
LEM2

⊢ x ∈ {x ,y}
LEM3

⊢ x = x

Syntax Proofs

∀aB C,
?a ∈ ?B →
?a ∈ (?B ∪ ?C)

What expressions make the
conclusion match the goal?

Unification

“Hint Database”

auto
autorewrite

Generic procedures make it easy
to quickly build simple automation

A Composable Reflective Core | Extensible Proof Engineering in Intensional Type Theory 17 / 29

Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.

Evaluation | Extensible Proof Engineering in Intensional Type Theory 18 / 29

Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.

Evaluation | Extensible Proof Engineering in Intensional Type Theory 18 / 29

BEDROCK: Composablity, Customizability & Scalability

BEDROCK [Chl11] is a Coq library for imperative program verification.
Verified thousands of lines of low-level code!

Basic data structures [MCB14]
Garbage Collector
Thread library and Web server [Chl15]
Robot Operating System [Chl15]

Reasonable proof burden.

Module Program Invar. Tactics Other Ratio
LinkedList 42 26 27 31 2.0
Malloc 43 16 112 94 5.2
ListSet 50 31 23 46 2.0
TreeSet 108 40 25 45 1.0
Queue 53 22 80 93 3.7
Memoize 26 13 56 50 4.6

“Overhead of verification”

< 20x

Evaluation | Extensible Proof Engineering in Intensional Type Theory 19 / 29

BEDROCK: Composablity, Customizability & Scalability

BEDROCK [Chl11] is a Coq library for imperative program verification.
Verified thousands of lines of low-level code!

Basic data structures [MCB14]
Garbage Collector
Thread library and Web server [Chl15]
Robot Operating System [Chl15]

Reasonable proof burden.

Module Program Invar. Tactics Other Ratio
LinkedList 42 26 27 31 2.0
Malloc 43 16 112 94 5.2
ListSet 50 31 23 46 2.0
TreeSet 108 40 25 45 1.0
Queue 53 22 80 93 3.7
Memoize 26 13 56 50 4.6

“Overhead of verification”

< 20x

Evaluation | Extensible Proof Engineering in Intensional Type Theory 19 / 29

BEDROCK: Macro Performance

Does open computational reflection make verification faster? Yes

Does it make verification fast? Reasonably

VC-gen HO Sym Eval HO Entailment

5% 4%
16%15%†

56%†

%
Ti

m
e

S
pe

nt

∼ 29% reflective automation
∼ 71% Ltac

† The division of the 71% is for illustrative purposes only, the results simply states that

71% of the total time is spent in Ltac .

Evaluation | Extensible Proof Engineering in Intensional Type Theory 20 / 29

BEDROCK: Macro Performance

Does open computational reflection make verification faster? Yes

Does it make verification fast? Reasonably

VC-gen HO Sym Eval HO Entailment

5% 4%
16%15%†

56%†

%
Ti

m
e

S
pe

nt

∼ 29% reflective automation
∼ 71% Ltac

† The division of the 71% is for illustrative purposes only, the results simply states that

71% of the total time is spent in Ltac .

Evaluation | Extensible Proof Engineering in Intensional Type Theory 20 / 29

BEDROCK: Macro Performance

Does open computational reflection make verification faster? Yes

Does it make verification fast? Reasonably

VC-gen HO Sym Eval HO Entailment

5% 4%
16%15%†

56%†

%
Ti

m
e

S
pe

nt

∼ 29% reflective automation
∼ 71% Ltac

† The division of the 71% is for illustrative purposes only, the results simply states that

71% of the total time is spent in Ltac .

Evaluation | Extensible Proof Engineering in Intensional Type Theory 20 / 29

BEDROCK: Macro Performance

Does open computational reflection make verification faster? Yes

Does it make verification fast? Reasonably

VC-gen

HO Sym Eval HO Entailment

5% 4%
16%15%†

56%†

%
Ti

m
e

S
pe

nt

∼ 29% reflective automation
∼ 71% Ltac

† The division of the 71% is for illustrative purposes only, the results simply states that

71% of the total time is spent in Ltac .

Evaluation | Extensible Proof Engineering in Intensional Type Theory 20 / 29

BEDROCK: Macro Performance

Does open computational reflection make verification faster? Yes

Does it make verification fast? Reasonably

VC-gen HO

Sym Eval HO Entailment

5% 4%
16%15%†

56%†

%
Ti

m
e

S
pe

nt

∼ 29% reflective automation
∼ 71% Ltac

† The division of the 71% is for illustrative purposes only, the results simply states that

71% of the total time is spent in Ltac .

Evaluation | Extensible Proof Engineering in Intensional Type Theory 20 / 29

BEDROCK: Macro Performance

Does open computational reflection make verification faster? Yes

Does it make verification fast? Reasonably

VC-gen HO Sym Eval

HO Entailment

5% 4%
16%15%†

56%†

%
Ti

m
e

S
pe

nt

∼ 29% reflective automation
∼ 71% Ltac

† The division of the 71% is for illustrative purposes only, the results simply states that

71% of the total time is spent in Ltac .

Evaluation | Extensible Proof Engineering in Intensional Type Theory 20 / 29

BEDROCK: Macro Performance

Does open computational reflection make verification faster? Yes

Does it make verification fast? Reasonably

VC-gen HO Sym Eval HO

Entailment

5% 4%
16%15%†

56%†

%
Ti

m
e

S
pe

nt

∼ 29% reflective automation
∼ 71% Ltac

† The division of the 71% is for illustrative purposes only, the results simply states that

71% of the total time is spent in Ltac .

Evaluation | Extensible Proof Engineering in Intensional Type Theory 20 / 29

BEDROCK: Macro Performance

Does open computational reflection make verification faster? Yes

Does it make verification fast? Reasonably

VC-gen HO Sym Eval HO Entailment

5% 4%
16%15%†

56%†

%
Ti

m
e

S
pe

nt

∼ 29% reflective automation
∼ 71% Ltac

† The division of the 71% is for illustrative purposes only, the results simply states that

71% of the total time is spent in Ltac .

Evaluation | Extensible Proof Engineering in Intensional Type Theory 20 / 29

BEDROCK: Macro Performance

Does open computational reflection make verification faster? Yes

Does it make verification fast? Reasonably

VC-gen HO Sym Eval HO Entailment

5% 4%
16%15%†

56%†

%
Ti

m
e

S
pe

nt

∼ 29% reflective automation
∼ 71% Ltac

† The division of the 71% is for illustrative purposes only, the results simply states that

71% of the total time is spent in Ltac .
Evaluation | Extensible Proof Engineering in Intensional Type Theory 20 / 29

BEDROCK: Customizability & Performance

Customizability is essential for good performance.

{...}−
{...}c3

{...}c2;c3

{x 7→ (l,n)∗ llist ls′ n}c2;c3

{x ̸= 0∧ llist ls x}c2;c3

{llist ls x}c1;c2;c3

Linked List Length
int length(llist∗ x) {
int n = 0;
while (x ̸= 0) { // c1

/* <loop invariant> */
n = n + 1; // c2

x = x→next; // c3

}
return n;

}

Time (sec)

w/ Custom

w/o Custom

0.38

0.30 0.89 0.58 1.77s

∼5x faster Reflective
Ltac

Cost for entering
“reflected” world

Evaluation | Extensible Proof Engineering in Intensional Type Theory 21 / 29

BEDROCK: Customizability & Performance

Customizability is essential for good performance.

{...}−
{...}c3

{...}c2;c3

{x 7→ (l,n)∗ llist ls′ n}c2;c3

{x ̸= 0∧ llist ls x}c2;c3

{llist ls x}c1;c2;c3

Linked List Length
int length(llist∗ x) {
int n = 0;
while (x ̸= 0) { // c1

/* <loop invariant> */
n = n + 1; // c2

x = x→next; // c3

}
return n;

}

Time (sec)

w/ Custom

w/o Custom

0.38

0.30

0.89 0.58 1.77s

∼5x faster

Reflective

Ltac
Cost for entering
“reflected” world

Evaluation | Extensible Proof Engineering in Intensional Type Theory 21 / 29

BEDROCK: Customizability & Performance

Customizability is essential for good performance.

{...}−
{...}c3

{...}c2;c3

{x 7→ (l,n)∗ llist ls′ n}c2;c3

{x ̸= 0∧ llist ls x}c2;c3

{llist ls x}c1;c2;c3

Linked List Length
int length(llist∗ x) {
int n = 0;
while (x ̸= 0) { // c1

/* <loop invariant> */
n = n + 1; // c2

x = x→next; // c3

}
return n;

}

Time (sec)

w/ Custom

w/o Custom

0.38

0.30 0.89

0.58 1.77s

∼5x faster

Reflective
Ltac

Cost for entering
“reflected” world

Evaluation | Extensible Proof Engineering in Intensional Type Theory 21 / 29

BEDROCK: Customizability & Performance

Customizability is essential for good performance.

{...}−
{...}c3

{...}c2;c3

{x 7→ (l,n)∗ llist ls′ n}c2;c3

{x ̸= 0∧ llist ls x}c2;c3

{llist ls x}c1;c2;c3

Linked List Length
int length(llist∗ x) {
int n = 0;
while (x ̸= 0) { // c1

/* <loop invariant> */
n = n + 1; // c2

x = x→next; // c3

}
return n;

}

Time (sec)

w/ Custom

w/o Custom

0.38

0.30 0.89 0.58 1.77s

∼5x faster

Reflective
Ltac

Cost for entering
“reflected” world

Evaluation | Extensible Proof Engineering in Intensional Type Theory 21 / 29

BEDROCK: Customizability & Performance

Customizability is essential for good performance.

{...}−
{...}c3

{...}c2;c3

{x 7→ (l,n)∗ llist ls′ n}c2;c3

{x ̸= 0∧ llist ls x}c2;c3

{llist ls x}c1;c2;c3

Linked List Length
int length(llist∗ x) {
int n = 0;
while (x ̸= 0) { // c1

/* <loop invariant> */
n = n + 1; // c2

x = x→next; // c3

}
return n;

}

Time (sec)

w/ Custom

w/o Custom

0.38

0.30 0.89 0.58 1.77s

∼5x faster

Reflective
Ltac

Cost for entering
“reflected” world

Evaluation | Extensible Proof Engineering in Intensional Type Theory 21 / 29

BEDROCK: Customizability & Performance

Customizability is essential for good performance.

{...}−
{...}c3

{...}c2;c3

{x 7→ (l,n)∗ llist ls′ n}c2;c3

{x ̸= 0∧ llist ls x}c2;c3

{llist ls x}c1;c2;c3

Linked List Length
int length(llist∗ x) {
int n = 0;
while (x ̸= 0) { // c1

/* <loop invariant> */
n = n + 1; // c2

x = x→next; // c3

}
return n;

}

Time (sec)

w/ Custom

w/o Custom

0.38

0.30 0.89 0.58 1.77s

∼5x faster Reflective
Ltac

Cost for entering
“reflected” world

5x overall speedup

Evaluation | Extensible Proof Engineering in Intensional Type Theory 21 / 29

Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 22 / 29

A Whole Range of Reflective Procedures

Build a language/library for writing/composing reflective procedures

Capture backtracking proof search (similar to Ltac)

Fix verify p c :=
match c with
| Write p v⇒
(* apply write lemma *)

| Read v e⇒
(* apply read lemma *)

| ...
end.

Fix use_hints hints goal :=
match hints with
| [] ⇒ false
| h :: hs⇒
(* apply h and recurse

* or

* try the remaining hints

*)
end.

Complex Simple

Arith
Permutations

Sets
Lists

Combining rich procedures

Quantifiers & hypotheses

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 23 / 29

A Whole Range of Reflective Procedures

Build a language/library for writing/composing reflective procedures

Capture backtracking proof search (similar to Ltac)

Fix verify p c :=
match c with
| Write p v⇒
(* apply write lemma *)

| Read v e⇒
(* apply read lemma *)

| ...
end.

Fix use_hints hints goal :=
match hints with
| [] ⇒ false
| h :: hs⇒
(* apply h and recurse

* or

* try the remaining hints

*)
end.

Complex Simple

Arith
Permutations

Sets
Lists

Combining rich procedures

Quantifiers & hypotheses

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 23 / 29

A Whole Range of Reflective Procedures

Build a language/library for writing/composing reflective procedures

Capture backtracking proof search (similar to Ltac)

Fix verify p c :=
match c with
| Write p v⇒
(* apply write lemma *)

| Read v e⇒
(* apply read lemma *)

| ...
end.

Fix use_hints hints goal :=
match hints with
| [] ⇒ false
| h :: hs⇒
(* apply h and recurse

* or

* try the remaining hints

*)
end.

Complex Simple

Arith
Permutations

Sets
Lists

Combining rich procedures

Quantifiers & hypotheses

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 23 / 29

Program Verification using Combinators

Ltac Automation
Ltac verify := repeat first

[eapply step_read ; [| side_condition]
| ...
| tauto].

Rtac Automation†

Def verify := repeat10 first
[eapply step_read_syn ; [| side_condition]
| ...
| rtauto].

Thm verify_sound : rtac_sound verify.
Proof. derive soundness; ... Qed.

Functions

Proof checked
once and for all

Soundness derived composablely

Builds the generic proof

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 24 / 29

Program Verification using Combinators

Ltac Automation
Ltac verify := repeat first

[eapply step_read ; [| side_condition]
| ...
| tauto].

Rtac Automation†

Def verify := repeat10 first
[eapply step_read_syn ; [| side_condition]
| ...
| rtauto].

Thm verify_sound : rtac_sound verify.
Proof. derive soundness; ... Qed.

Functions

Proof checked
once and for all

Soundness derived composablely

Builds the generic proof

† Stylized Rtac syntax.

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 24 / 29

Program Verification using Combinators

Ltac Automation
Ltac verify := repeat first

[eapply step_read ; [| side_condition]
| ...
| tauto].

Rtac Automation†

Def verify := repeat10 first
[eapply step_read_syn ; [| side_condition]
| ...
| rtauto].

Thm verify_sound : rtac_sound verify.
Proof. derive soundness; ... Qed.

Functions

Proof checked
once and for all

Soundness derived composablely

Builds the generic proof

† Stylized Rtac syntax.

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 24 / 29

Program Verification using Combinators

Ltac Automation
Ltac verify := repeat first

[eapply step_read ; [| side_condition]
| ...
| tauto].

Rtac Automation†

Def verify := repeat10 first
[eapply step_read_syn ; [| side_condition]
| ...
| rtauto].

Thm verify_sound : rtac_sound verify.
Proof. derive soundness; ... Qed.

Functions

Proof checked
once and for all

Soundness derived composablely

Builds the generic proof

† Stylized Rtac syntax.

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 24 / 29

Program Verification using Combinators

Ltac Automation
Ltac verify := repeat first

[eapply step_read ; [| side_condition]
| ...
| tauto].

Rtac Automation†

Def verify := repeat10 first
[eapply step_read_syn ; [| side_condition]
| ...
| rtauto].

Thm verify_sound : rtac_sound verify.
Proof. derive soundness; ... Qed.

Functions

Proof checked
once and for all

Soundness derived composablely

Builds the generic proof

† Stylized Rtac syntax.

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 24 / 29

Program Verification using Combinators

Ltac Automation
Ltac verify := repeat first

[eapply step_read ; [| side_condition]
| ...
| tauto].

Rtac Automation†

Def verify := repeat10 first
[eapply step_read_syn ; [| side_condition]
| ...
| rtauto].

Thm verify_sound : rtac_sound verify.
Proof. derive soundness; ... Qed.

Functions

Proof checked
once and for all

Soundness derived composablely

Builds the generic proof

† Stylized Rtac syntax.

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 24 / 29

Verifying Rtac: Soundly Assembling Proofs

?Q = P →

{llistx ls}c1;c2;c3{?Q}
llistx ls ⊢ ∃l ls n, ...

?Q = P →

{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →

{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →

∀l ls n,{x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

Local Reasoning
Combine matching proofs

?Q = P →

{P}−{?Q}
?Q = P P ⊢?Q

Global Reasoning
Instantiate unification variable

Propagate through the entire proof!

Ensure that the choice is
valid in the stronger context

Reason under binders

Phase-split: Object-level terms
must not affect Rtac invariants

(

False → 1 = 2

)

∧Rtac-inv

“Free” unification variables

Parallel obligationsParallel obligations

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 25 / 29

Verifying Rtac: Soundly Assembling Proofs

?Q = P →

{llistx ls}c1;c2;c3{?Q}
llistx ls ⊢ ∃l ls n, ...

?Q = P →

{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →

{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →

∀l ls n,{x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

Local Reasoning
Combine matching proofs

?Q = P →

{P}−{?Q}
?Q = P P ⊢?Q

Global Reasoning
Instantiate unification variable

Propagate through the entire proof!

Ensure that the choice is
valid in the stronger context

Reason under binders

Phase-split: Object-level terms
must not affect Rtac invariants

(

False → 1 = 2

)

∧Rtac-inv

“Free” unification variables

Parallel obligationsParallel obligations

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 25 / 29

Verifying Rtac: Soundly Assembling Proofs

?Q = P →

{llistx ls}c1;c2;c3{?Q}
llistx ls ⊢ ∃l ls n, ...

?Q = P →

{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →

{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →

∀l ls n,{x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

Local Reasoning
Combine matching proofs

?Q = P →

{P}−{?Q}
?Q = P P ⊢?Q

Global Reasoning
Instantiate unification variable

Propagate through the entire proof!

Ensure that the choice is
valid in the stronger context

Reason under binders

Phase-split: Object-level terms
must not affect Rtac invariants

(

False → 1 = 2

)

∧Rtac-inv

“Free” unification variables

Parallel obligationsParallel obligations

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 25 / 29

Verifying Rtac: Soundly Assembling Proofs

?Q = P →

{llistx ls}c1;c2;c3{?Q}
llistx ls ⊢ ∃l ls n, ...

?Q = P →

{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →

{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →

∀l ls n,{x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

Local Reasoning
Combine matching proofs

?Q = P →

{P}−{?Q}
?Q = P P ⊢?Q

Global Reasoning
Instantiate unification variable

Propagate through the entire proof!

Ensure that the choice is
valid in the stronger context

Reason under binders

Phase-split: Object-level terms
must not affect Rtac invariants

(

False → 1 = 2

)

∧Rtac-inv

“Free” unification variables

Parallel obligationsParallel obligations

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 25 / 29

Verifying Rtac: Soundly Assembling Proofs

?Q = P →

{llistx ls}c1;c2;c3{?Q}
llistx ls ⊢ ∃l ls n, ...

?Q = P →

{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →

{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →

∀l ls n,{x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

Local Reasoning
Combine matching proofs

?Q = P →

{P}−{?Q}
?Q = P P ⊢?Q

Global Reasoning
Instantiate unification variable

Propagate through the entire proof!

Ensure that the choice is
valid in the stronger context

Reason under binders

Phase-split: Object-level terms
must not affect Rtac invariants

(
False → 1 = 2

)
∧Rtac-inv

“Free” unification variables

Parallel obligationsParallel obligations

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 25 / 29

Verifying Rtac: Soundly Assembling Proofs

?Q = P →

{llistx ls}c1;c2;c3{?Q}
llistx ls ⊢ ∃l ls n, ...

?Q = P →

{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →

{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →

∀l ls n,{x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

Local Reasoning
Combine matching proofs

?Q = P →

{P}−{?Q}
?Q = P P ⊢?Q

Global Reasoning
Instantiate unification variable

Propagate through the entire proof!

Ensure that the choice is
valid in the stronger context

Reason under binders

Phase-split: Object-level terms
must not affect Rtac invariants

(

False → 1 = 2

)

∧Rtac-inv

“Free” unification variables

Parallel obligationsParallel obligations

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 25 / 29

Verifying Rtac: Soundly Assembling Proofs

?Q = P →{llistx ls}c1;c2;c3{?Q}
llistx ls ⊢ ∃l ls n, ... ?Q = P →{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

?Q = P →{∃l ls n,x 7→ (l,n)∗ llistn ls}c2;c3{?Q}
?Q = P →∀l ls n,{x 7→ (l,n)∗ llistn ls}c2;c3{?Q}

Local Reasoning
Combine matching proofs

?Q = P →{P}−{?Q}
?Q = P P ⊢?Q

Global Reasoning
Instantiate unification variable

Propagate through the entire proof!

Ensure that the choice is
valid in the stronger context

Reason under binders

Phase-split: Object-level terms
must not affect Rtac invariants

(

False → 1 = 2

)

∧Rtac-inv

“Free” unification variables

Parallel obligationsParallel obligations

Rtac : Reflective Building Blocks | Extensible Proof Engineering in Intensional Type Theory 25 / 29

Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.

Enriched Theories | Extensible Proof Engineering in Intensional Type Theory 26 / 29

Enriching the Framework

λ

λP

λ2

λω

λω

Like HOL

λPω

λP2 λPω

Like Coq

The Lambda Cube

Polymorphism ✓
“Fake it” with specialized term algebras.
Details in thesis.

7 Do not support type variables.

Type Functions ✓
“Fake it” with specialized type algebras
Details in thesis.

Term Dependency 7

7 Cyclic dependency between types and
terms!
Open problem with interesting
ramifications

Topology [Shu14]
Lots of work [Dan07, Cha09, McB10]

Enriched Theories | Extensible Proof Engineering in Intensional Type Theory 27 / 29

Enriching the Framework

λ

λP

λ2

λω

λω

Like HOL

λPω

λP2 λPω

Like Coq

The Lambda Cube

Polymorphism ✓
“Fake it” with specialized term algebras.
Details in thesis.

7 Do not support type variables.

Type Functions ✓
“Fake it” with specialized type algebras
Details in thesis.

Term Dependency 7

7 Cyclic dependency between types and
terms!
Open problem with interesting
ramifications

Topology [Shu14]
Lots of work [Dan07, Cha09, McB10]

Enriched Theories | Extensible Proof Engineering in Intensional Type Theory 27 / 29

Enriching the Framework

λ

λP

λ2

λω

λω

Like HOL

λPω

λP2 λPω

Like Coq

The Lambda Cube

Polymorphism ✓
“Fake it” with specialized term algebras.
Details in thesis.

7 Do not support type variables.

Type Functions ✓
“Fake it” with specialized type algebras
Details in thesis.

Term Dependency 7

7 Cyclic dependency between types and
terms!
Open problem with interesting
ramifications

Topology [Shu14]
Lots of work [Dan07, Cha09, McB10]

Enriched Theories | Extensible Proof Engineering in Intensional Type Theory 27 / 29

Enriching the Framework

λ

λP

λ2

λω

λω

Like HOL

λPω

λP2 λPω

Like Coq

The Lambda Cube

Polymorphism ✓
“Fake it” with specialized term algebras.
Details in thesis.

7 Do not support type variables.

Type Functions ✓
“Fake it” with specialized type algebras
Details in thesis.

Term Dependency 7

7 Cyclic dependency between types and
terms!
Open problem with interesting
ramifications

Topology [Shu14]
Lots of work [Dan07, Cha09, McB10]

Enriched Theories | Extensible Proof Engineering in Intensional Type Theory 27 / 29

Enriching the Framework

λ

λP

λ2

λω

λω

Like HOL

λPω

λP2 λPω

Like Coq

The Lambda Cube

Polymorphism ✓
“Fake it” with specialized term algebras.
Details in thesis.

7 Do not support type variables.

Type Functions ✓
“Fake it” with specialized type algebras
Details in thesis.

Term Dependency 7

7 Cyclic dependency between types and
terms!
Open problem with interesting
ramifications

Topology [Shu14]
Lots of work [Dan07, Cha09, McB10]

Enriched Theories | Extensible Proof Engineering in Intensional Type Theory 27 / 29

Enriching the Framework

λ

λP

λ2

λω

λω

Like HOL

λPω

λP2 λPω

Like Coq

The Lambda Cube

Polymorphism ✓
“Fake it” with specialized term algebras.
Details in thesis.

7 Do not support type variables.

Type Functions ✓
“Fake it” with specialized type algebras
Details in thesis.

Term Dependency 7

7 Cyclic dependency between types and
terms!
Open problem with interesting
ramifications

Topology [Shu14]
Lots of work [Dan07, Cha09, McB10]

Enriched Theories | Extensible Proof Engineering in Intensional Type Theory 27 / 29

Revisiting the Thesis

Open computational reflection in intensional type theories
can lower the cost of writing automation that is simultaneously

trustworthy, scalable, composable, and customizable.

Conclusion | Extensible Proof Engineering in Intensional Type Theory 28 / 29

Thank You

Greg Morrisett Adam Chlipala Stephen Chong

Thomas Braibant Jesper Bengtson Ryan Wisnesky

Elizabeth Malecha

Mom & Dad

MD 309, PLV@MIT, Antonis Stampoulis, Uri Braun
Conclusion | Extensible Proof Engineering in Intensional Type Theory 29 / 29

References I

Samuel Boutin.

Using reflection to build efficient and certified decision procedures.
In Proc. TACS, 1997.

James Chapman.

Type theory should eat itself.
Electron. Notes Theor. Comput. Sci., 228:21–36, January 2009.

Adam Chlipala.

Mostly-automated verification of low-level programs in computational separation logic.
In Proc. PLDI, pages 234–245. ACM, 2011.

Adam Chlipala.

From network interface to multithreaded web applications: A case study in modular program verification.
2015.
To Appear.

Nils Anders Danielsson.

A formalisation of a dependently typed language as an inductive-recursive family.
In Thorsten Altenkirch and Conor McBride, editors, Types for Proofs and Programs, volume 4502 of Lecture Notes in Computer
Science, pages 93–109. Springer Berlin Heidelberg, 2007.

Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers.
Meta-theory a la carte.
SIGPLAN Not., 48(1):207–218, January 2013.

Conor McBride.

Outrageous but meaningful coincidences: Dependent type-safe syntax and evaluation.
In Proceedings of the 6th ACM SIGPLAN Workshop on Generic Programming, WGP ’10, pages 1–12, New York, NY, USA, 2010. ACM.

References | Extensible Proof Engineering in Intensional Type Theory 30 / 29

References II

Gregory Malecha, Adam Chlipala, and Thomas Braibant.

Compositional computational reflection.
In Interactive Theorem Proving, 2014.

Michael Shulman.

Homotopy type theory should eat itself (but so far, it’s too big to swallow), March 2014.

Wouter Swierstra.

Data types à la carte.
Journal of Functional Programming, 18:423–436, 7 2008.

References | Extensible Proof Engineering in Intensional Type Theory 31 / 29

	The Foundations
	Computational Reflection

	A Composable Reflective Core
	Evaluation
	Rtac: Reflective Building Blocks
	Enriched Theories
	Conclusion
	Appendix

