
Modular Deductive Verification of Sampled-Data Systems

Daniel Ricketts
UC San Diego

La Jolla, California 92037
daricket@cs.ucsd.edu

Gregory Malecha
UC San Diego

La Jolla, California 92037
gmalecha@gmail.com

Sorin Lerner
UC San Diego

La Jolla, California 92037
lerner@cs.ucsd.edu

ABSTRACT
Unsafe behavior of cyber-physical systems can have disas-
trous consequences, motivating the need for formal verifica-
tion of these kinds of systems. Deductive verification in a
proof assistant such as Coq is a promising technique for this
verification because it (1) justifies all verification from first
principles, (2) is not limited to classes of systems for which
full automation is possible, and (3) provides a platform for
proving powerful, higher-order modularity theorems that are
crucial for scaling verification to complex systems. In this
paper, we demonstrate the practicality, utility, and scalabil-
ity of this approach by developing in Coq sound and powerful
rules for modular construction and verification of sampled-
data cyber-physical systems. We evaluate these rules by
using them to verify a number of non-trivial controllers en-
forcing safety properties of a quadcopter, e.g. a geo-fence.
We show that our controllers are realistic by running them
on a real, flying quadcopter.

1. INTRODUCTION
Errors in cyber-physical software can lead to disastrous

consequences. These consequences mean that such systems
demand the most rigorous verification techniques. There
has been a variety of work on developing fully-automated
tools for verification of cyber-physical systems [11, 16], but
due to the complexity of the domain, these tools are only
able to verify particular classes of systems and properties.
On the other hand, all cyber-physical systems are in range
for deductive verification in a proof assistant, at least in
theory. However, one of the typically-stated drawbacks of
verification in proof assistants is the extremely high manual
labor cost required to produce these proofs.

In this paper, we demonstrate how to mitigate this bur-
den using modular verification techniques. These techniques
allow us to verify systems that are outside the scope of fully
automated techniques, such as hybrid system model check-
ers, without a massive amount of manual labor.

We focus on the modular construction and verification of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EMSOFT’16, October 01-07 2016, Pittsburgh, PA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4485-2/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2968478.2968495

sampled-data systems [7]. In this important class of systems,
there is a single discrete controller that runs periodically.
In between executions of the controller, the system evolves
according to continuous physical dynamics.

For this class of systems, one of the challenges is in en-
suring that the specification of the discrete controller is al-
ways enabled, i.e. it always specifies at least one successor
state. While this might seem trivial, consider the following
scenario. Suppose we have built a module that prevents a
quadcopter from exceeding some maximum altitude. Fur-
thermore, suppose we have also built another module that
prevents the quadcopter from violating some minimum alti-
tude. If we have separately verified that these two modules
enforce their respective properties, we would like to com-
pose them in parallel to guarantee both properties simul-
taneously. That is, we would like the composed system to
guarantee that the system never goes too high or too low.
However, this is not always possible; a module could enforce
the upper bound on altitude by always accelerating down-
wards. Likewise, a module could enforce the lower bound
on altitude by always accelerating upwards. Clearly, näıvely
composing the controllers of these modules in parallel would
result in a system that gets stuck – there is never an accel-
eration that both controllers can agree on.

In this paper, we present sound techniques for resolving
this and other potential pitfalls for reusing and compos-
ing modules for sampled-data systems. We observed that
modularity is facilitated by separating verification into two
parts: preservation and progress. Preservation ensures that
the model guarantees the safety property inductively, while
progress ensures that the system model is always enabled.
This separation facilitates the application of several simple,
general, and powerful operators, namely substitution, con-
junction, and disjunction. More precisely, we state sufficient
conditions for applying these operators to individual mod-
ules to produce a new sampled-data system with the desired
properties (e.g. the conjunction of the safety properties of
conjoined modules). Crucially, these sufficient conditions
are in terms of preservation and progress.

To validate the expressiveness of our theorems, we ap-
ply them in the context of quadcopters, by showing how to
compose several simple verified controllers together in differ-
ent ways to produce many different verified composed con-
trollers. To ensure that our controllers are practical, we run
them on an actual quadcopter. In summary:

• We implement in the Coq proof assistant a general
approach for modular verification of sampled-data sys-
tems by separately exposing proofs of preservation and

http://dx.doi.org/10.1145/2968478.2968495

progress. The development is available from the project
webpage: http://veridrone.ucsd.edu.

• We apply this approach to build and verify arbitrary
3D geofences for a quadcopter, including walls, boxes,
and rectangular donuts, starting with two simple ver-
ified 1D controllers. We show that our modular verifi-
cation techniques keep the proof burden manageable.

• We evaluate our geo-fences by running them on an ac-
tual quadcopter, and show that they work in practice.

• We discuss the capabilities of three state-of-the-art
fully-automated tools (SpaceEx, Flow*, and dReach)
in verifying our geo-fence controllers.

2. OVERVIEW
We start with an informal description of the operators

that our theory covers: substitution, conjunction, and dis-
junction. We then give an overview of verifying controllers
using these operators. Finally, we describe how we applied
this to build a verified family of geo-fences for a quadcopter.

Operators. Substitution of expressions for variables rep-
resents a form of reuse, allowing us to transform systems
and their properties into a different coordinate system. For
example, given a model of a system defined in the x-y plane,
the substitution {x 7→ r cosφ, y 7→ r sinφ} transforms the
model to polar coordinates, the substitution {x 7→ y, y 7→
x} rotates the system, and the substitution {x 7→ x + 5}
translates the system by 5 units in the x dimension. How-
ever, not all substitutions soundly transport both systems
and their properties; our theory (Section 5.1) gives formal
conditions under which substitutions are permitted.

Disjunction of two systems represents nondeterministic
choice between the controllers of the system. For example,
if we have a controller that prevents a quadcopter from fly-
ing too far to the west and another controller that prevents
a quadcopter from flying too far north, then their disjunc-
tion enforces a north-west no-fly zone – the quadcopter must
stay to the north or to the west of the no-fly zone. Un-
like conjunction, there is no risk of the composed system
getting stuck. Instead, the challenge with disjunction is in
constraining the nondeterministic choice between the con-
trollers. Our theorems and definitions in Section 5.2 make
this formal by including the inductive invariants of each sys-
tem within the composed controller.

Conjunction of two systems represents parallel composi-
tion of these systems. For example, if we have a system
that enforces an upper bound on velocity and a system that
enforces a lower bound on velocity, then their conjunction
enforces both an upper and a lower bound on velocity. We
can also conjoin systems that control or restrict different
variables, such as a system that enforces a bound on velocity
and a system that enforces a bound on position. However, as
discussed in the introduction, the challenge of applying this
operator is in ensuring that the conjoined systems never get
stuck, e.g. when the controller of one system requires posi-
tive acceleration while the other requires negative accelera-
tion. Again, our theory (Section 5.3) gives formal conditions
under which conjunctive composition is possible.

Note that disjunctive and conjunctive composition are re-
lated to alternative and parallel composition.

Controller Verification. To illustrate how the operators
work, we explain the construction and modular verification

(a) (b)
substitution

(c)

conjunction

(d)
substitution

(e)

conjunction

(f)

substitution
and disjunction

Figure 1: Overview of construction and verification
of position bounding controllers.

of several general purpose controllers for enforcing state con-
straints, depicted in Figure 1. We begin with a simple ver-
ified module: a controller that enforces an upper bound on
position in one spatial dimension by controlling acceleration
(depicted by (a) in Figure 1). We use substitution to “mir-
ror” this module and its correctness property, thus obtaining
a module (b) that enforces a lower bound on position, again
in one dimension. We conjoin these two modules to form a
controller (c) enforcing upper and lower bounds on position,
still in one dimension. We use substitution to rotate this
interval controller into a second, orthogonal dimension (d),
then conjoin (c) and (d) to form a controller (e) enforcing
a 2 dimensional rectangle, i.e. upper and lower bounds on
position in two dimensions. Finally, we use substitution to
build and verify four translated copies of (e) and disjunc-
tion of these four copies to enforce a rectangular donut (f).
We use disjunction to enforce that the system must, at all
times, be in the first copy of (e), the second, the third, or
the fourth. Moreover, since the rectangles are overlapping,
the system can transition from one rectangle to another.

Quadcopter. Although the above approach can enforce
state constraints for a variety of applications (e.g. trains,
intelligent cruise control), we evaluate our approach in the
context of quadcopter controllers that enforce position and
velocity bounds. Connecting the verification methodology
above to quadcopters required application of the three oper-
ators under the complex, coupled dynamics of a quadcopter,
thus showcasing the applicability of our rules to solve com-
plex problems. Crucially, our Coq theorems for each of these
operators give formal conditions under which this is sound.

Ultimately, we were able to use the verification techniques
in Figure 1 to build a three dimensional bounding box of
both position and velocity for the quadcopter. This bound-
ing cube provides a powerful building block for constructing
“pixelated shapes” (analogous to (f) in Figure 1), which can
be used to enforce interesting shapes such as a flying around
and over but not near the pilot. The results of our verifica-
tion along with actual flight tests are in Section 6.

3. SAMPLED-DATA SYSTEMS
Before presenting our approach, we describe our model

of cyber-physical systems and in particular, sampled-data
systems. All of our work is formalized inside the Coq proof
assistant, but for exposition purposes, we focus on the math-
ematical concepts rather than concrete Coq syntax. In the
remainder of this section we cover relevant background on

http://veridrone.ucsd.edu

our temporal logic, the way we use it to describe sampled-
data systems, and give a simple example illustrating the
difficulty of modularity in this domain.

Linear Temporal Logic. Based on work by Ricketts
et al [26], we encode sampled-data systems and their prop-
erties within discrete-time linear temporal logic (LTL). An
LTL formula specifies the possible traces of a system. In our
model, a trace is an infinite sequence of states representing
observations of a system at discrete points in time. Formally,
a state is a mapping from variables to real numbers. In-
spired by Lamport’s Temporal Logic of Actions (TLA) [18],
our logic consists of state formulas (predicates over a sin-
gle state), action formulas (state relations specifying system
transitions), and trace formulas (predicates over traces). In
action formulas, the values of variables in the current state
are notated using bold script, e.g. x, while the values of
variables in the next state use bold script with a prime, e.g.
x′. Variables not mentioned in a formula are unconstrained.

For example, the following formula describes a system
where the initial value of x is 0 and the value of x is in-
cremented during each transition.

x = 0 ∧ 2
(
x′ = x+ 1

)
The initial condition (x = 0) is a state formula. The tran-
sition relation (x′ = x + 1) is an action formula and refers
to values in the next state using a prime, e.g. x′. Both
the transition relation and the property are lifted to trace
formulas using the always modality (2). When always is
applied to an action formula, it means that all pairs of tem-
porally adjacent states are related by the action formula.
When always is applied to a state formula, it means that all
states satisfy the property.

Finally, we use tr |= P to denote that formula P holds
on trace tr and P ` Q to denote that Q holds on all traces
that P holds on (` P denotes True ` P). For example, the
following states that all traces of the above system have the
property that x is always at least 0.

` x = 0 ∧ 2
(
x′ = x+ 1

)
→ 2 (x ≥ 0)

The implication means that the traces of the system are a
subset of the traces for which x is at least 0 in all states.

Sampled-data systems in LTL. In a sampled-data sys-
tem, the state repeatedly transitions either continuously ac-
cording to some differential (in)equations or discretely ac-
cording to the (possibly nondeterministic) controller. In ad-
dition, the elapsed time between discrete transitions of the
controller is bounded by some constant. In LTL, we can
model such systems using a formula of the form

I ∧ 2(Sys∆ D W)

Here, we borrow from [26] the action formula Sys∆ D W,
specifying transitions of a sampled-data system, where: D
is an action formula specifying the discrete controller, and
W is a system of differential (in)equalities specifying the
continuous transition. Formally,

Sys∆ D W ,
D ∧ τ = 0 ∧ 0 < τ ′ ≤ ∆

∨ Continuous (W ∧ τ̇ = −1) ∧ τ ′ ≥ 0

In this action formula, the disjunction captures the fact that
the system transitions either continuously according to the
physical world or discretely according to the controller. The

definition encapsulates both the semantics of the continuous
transition and the timing characteristics of the system.

Informally, Continuous(W) means that the state evolves
for some amount of time according to a continuous func-
tion satisfying the differential (in)equalities inW. Formally,
Continuous(W) is an LTL action formula, defined as follows:

Continuous(ẋ1 ∼1 e1, . . . , ẋn ∼n en) ≡
∃(r : R) (f : R→ Var→ R), 0 < r
∧ Solves(f, ẋ1 ∼1 e1, . . . , ẋn ∼n en, r)
∧x1 = f(0, x1) ∧ . . . ∧ xn = f(0, xn)
∧x1

′ = f(r, x1) ∧ . . . ∧ xn′ = f(r, xn)

Here, r is the amount of time that the system evolves for, and
f is a solution to the differential (in)equations, expressed
by the Solves predicate (defined using Coq’s real analysis
library) with ∼i∈ {=, <,≤, >,≥}. The final two lines relate
the current state to the value of the solution f at 0 and the
next state to the value of f at time r.

At first glance, this definition of continuous transitions
may look strange since it seems to allow the trace to “skip”
states. However, while a single trace may skip a certain state
during a continuous transition, another trace does include
that state because the definition of Continuous captures all
possible continuous transitions of any duration. Thus, a for-
mula of the form I ∧2(Sys∆ D W) captures all possible se-
quences of discrete observations of a system. The soundness
of this encoding is argued by Lamport in [19].

The timing constraint is captured using the variable τ
(not mentioned in D or W), which tracks the time that
elapses between successive transitions of the discrete con-
troller. During the continuous evolution of the system, τ
decreases at the same rate as time, i.e. τ̇ = −1, and τ ′ ≥ 0
ensures that no more than ∆ time elapses between successive
discrete transitions of the controller. The discrete transition
occurs when the timer has expired (τ = 0); this transition
resets the timer to a positive value that is at most ∆.

Notations. Throughout this paper when X is a system,
we use DX and WX to denote the discrete and continuous
transitions of X, respectively. Also, we use the inductive
invariant of a system as its initial condition; thus we use I to
denote an inductive invariant and IX to denote the inductive
invariant of system X. In practice, one must prove that the
initial condition of a system implies the inductive invariant.

Stuck Specifications. The physical world always evolves
because time always evolves. Cyber-physical system speci-
fications should adhere to this property – the specification
should never reach a state in which it is stuck, i.e. in which
a transition is impossible. For example, consider the sys-
tem Sys∆ False W. In this system, there is never a discrete
transition (expressed using the unsatisfiable action formula
False). Since a discrete transition never occurs, a continu-
ous transition is not possible once time reaches ∆. Readers
familiar with Zeno specifications [1] will note that Sys spec-
ifications that are never stuck are non-Zeno.

We rule out such specifications using a new abstraction
called System, defined as follows:

System∆ D W , Sys∆ D W ∨¬Enabled
(
Sys∆ D W

)
In the above, Enabled takes an action formula and returns
a state formula. In particular, Enabled(A) holds on a given
state st iff there exists a next state st′ such that (st, st′) ∈ A,
i.e. the system can take an A transition. A specification

whose transition is built using System can never become
stuck; if the underlying Sys becomes stuck (not Enabled),
then the clause ¬Enabled

(
Sys∆ D W

)
conservatively ex-

presses that anything can happen. Informally, we will not
be able to prove any interesting global properties of a System
when the underlying Sys can reach a state in which it is not
Enabled since we will know nothing about the next state.

It may seem trivial to avoid writing stuck specifications
for sampled-data systems, and thus the distinction between
Sys and System appears to be only theoretical. However,
Section 4 will show that avoiding stuck specifications is a
core challenge of building sampled-data systems modularly.

4. A MODULAR BASIS FOR REASONING
In this section we present the foundation of our approach

to modular reasoning about sampled-data systems: separat-
ing proofs into preservation and progress. This foundation
will allow us to build the theory for applying substitution,
conjunction, and disjunction (presented in Section 5).

In general, our end goal is to prove properties of the form:

` I ∧ 2(System∆ D W)→ 2S

This property states that, starting with initial condition I,
condition S always holds if at each point in the trace, the
transition relation is described by (System∆ D W). Unfor-
tunately, properties like the one above are not modular. For
example, suppose we have two discrete transitions D1 and
D2 which independently ensure S1 and S2, i.e.

` I ∧ 2(System∆ D1 W)→ 2S1

` I ∧ 2(System∆ D2 W)→ 2S2

We would like to combine these proofs to show that S1 ∧ S2

is an invariant of the conjoined system System∆ (D1∧D2)W.
Unfolding the definition of System reveals that this is not, in
general, true. The problem is that EnabledD1 ∧ EnabledD2

does not necessarily imply Enabled (D1 ∧ D2).1 This for-
malizes the challenge described in the introduction – näıve
parallel composition (conjunction) of controllers can result
in a controller that gets stuck.

Crucially, Enabled is inherently non-modular, so global in-
variant proofs of systems specified using System are inher-
ently non-modular. By ruling out stuck specifications, we
also rule out the modularity of global invariant proofs.

Regaining Modularity. The key to regaining modularity
is a shift from global proofs to local ones. In particular, we
will make the inductive invariant of the system explicit and
use it to prove two properties independently: preservation of
the invariant, and progress of the system under the invariant.
As we will see in Section 5, this decomposition of the global
property into local ones makes it much easier to combine
and re-use systems and their proofs.

Preservation. Preservation of property (I) under an ac-
tion formula states if I holds in the current state then it
holds in the next state. Formally,

SysPreserves I
(
Sys∆ D W

)
, I ∧ Sysinv ∧ Sys∆ D W → I ′

where I ′ represents the state formula I with all variables
primed. The Sysinv premise expresses the invariants guaran-
teed by the Sys abstraction, namely that no more than ∆
time elapses between discrete transitions.
1Consider Enabled (x′ = 1 ∧ x′ = 0)

Progress. Progress under an invariant justifies that the
system is Enabled assuming the invariant. Formally,

SysProgress I (Sys∆ D W) ,
I ∧ Sysinv → Enabled (Sys∆ D W)

This condition allows us to prove that a Sys and a System
describe exactly the same system.

Note that, here, progress is a safety property that is closely
related to the notion of progress in programming languages.
It is different than progress properties in distributed sys-
tems, and it is different than convergence to an equilibrium
in control theory.

Combining Preservation & Progress. The combina-
tion of preservation of and progress under the same induc-
tive invariant is sufficient to prove that the invariant is a
global invariant of the corresponding System, which is ulti-
mately our goal. This is captured by the following theorem:

Theorem 1. LocalToGlobal

SysPreserves I (Sys∆ D W)
∧ SysProgress I (Sys∆ D W)
∧ I → S
` I ∧ 2 (System∆ D W)→ 2S

5. MODULAR SAMPLED-DATA SYSTEMS
In this section, we show how to use preservation and

progress to reason modularly about sampled-data systems.
In particular, for each of our three operators (substitution,
disjunction, and conjunction), we present theorems that state
formal conditions under which application of the operator
guarantees preservation and progress. We illustrate each of
the operators and corresponding theorems by building veri-
fied state-constraining controllers for quadcopters. This al-
lows us to construct and verify controllers enforcing policies
such as“do not fly above 400 feet” (FAA regulation for recre-
ational drones), “do not fly within 5 miles of an airport”, and
“do not fly within 5 feet of the pilot.”

It is important to note that all of the state-constraining
controllers that we verify are non-deterministic. This means
that the discrete transitions do not compute a single value
for each control variable (e.g. acceleration) but instead de-
scribe a set of allowed values that ensure the desired state-
constraint. As we will see, this non-determinism is crucial
for conjunctive composition (Section 5.3). In Section 6, we
discuss how the actual implementation of these controllers
resolves this non-determinism.

Building blocks. As the basic building blocks of our
development, we start with two sampled-data systems de-
veloped and verified by Ricketts et al. [26]. Both operate in
one spatial dimension, i.e.

W1D , ẏ = v ∧ v̇ = a ∧ ȧ = 0

The two controllers each enforce constant bounds on a state
variable by controlling acceleration (a). The first-derivative
controller (M∂) bounds velocity using acceleration (the first-
derivative of velocity). The second-derivative controller (M∂2)
bounds position using acceleration (the second-derivative of
position). To ensure that M∂2 can stop before violating the
boundary, the controller is parameterized by amin which rep-
resents the braking acceleration and smallest possible accel-
eration (and is negative). Figure 2 gives the discrete tran-
sitions and inductive invariants for the two systems. Each

First-Derivative Controller (M∂ = Sys∆ D∂ W1D)

D∂ , Ca′ ∧ (a′ ·∆ + v ≤ ub ∨ a′ ≤ 0)

I∂ , (a < 0→ v ≤ ub) ∧ (a ≥ 0→ a · τ + v ≤ ub)

Second-Derivative Controller (M∂2 = Sys∆ D∂2 W1D)

D∂2 , (0 ≤ v + a′ ·∆→
td(v,a′,∆) + sd(v + a′ ·∆) + y ≤ yub)

(v + a′ ·∆ ≤ 0 ∧ 0 < v →
td(v,a′, −v

a′) + y ≤ yub) ∧ Ca′
I∂2 , ∀t : R, 0 ≤ t ≤ τ →

y+td(v,a, t) + sd(max(0,v + a · t)) ≤ yub
where

td(v, a,∆) , v ·∆ + a·∆2

2
sd(v) , − v2

2·amin

Ca , amin ≤ a amin < 0

Figure 2: Discrete transitions and inductive invari-
ants from [26].

inductive invariant states that, given the time until the next
discrete transition, the system can stop before the boundary.

Ricketts et al. verified both of these controllers in a global
style but did not compose them. We ported each of the
global proofs to our local, modular specification by extract-
ing the inductive invariant (which was stated explicitly in
the proof) and the preservation proof (which formed the in-
ductive case). Beyond extracting the safety proofs, we also
had to verify progress, which was not addressed by Ricketts
et al., but is trivial for such basic modules. In the remain-
der of this section, we denote the preservation and progress
proofs of the two controllers by: ∂-Preserves, ∂-Progress,
∂2-Preserves, and ∂2-Progress.

Quadcopter Controller. To build and verify controllers
for quadcopters, we need a model of the physical dynamics
of a quadcopter, called WQC :

WQC ,


ẋ = vx ∧ ẏ = vy ∧ ż = vz

∧ v̇x = T cosφ sinθ
∧ v̇y = −T sinφ
∧ v̇z = T cosφ cosθ − g
∧ φ̇ = 0 ∧ θ̇ = 0 ∧ Ṫ = 0


Here T represents the combined thrust of the motors (nor-

malized with respect to the mass of the quadcopter), θ rep-
resents the pitch (the angle around the y-axis), and φ rep-
resents the roll (the angle around the x-axis). Our model is
based on the simplifying assumption (called the “small angle
condition”) that a trusted attitude controller can instanta-
neously achieve any pitch and roll within the bounds −30◦

to 30◦ with a thrust greater than or equal to 0, while holding
yaw constant at 0.

Cθφ , |θ| ≤ 30◦ ∧ |φ| ≤ 30◦ ∧ 0 ≤ T

Prior work has suggested that this is a reasonable approxi-
mation under this small-angle condition (Cθφ), since the atti-
tude dynamics are significantly faster than the velocity and
position dynamics [13]. We capture this condition by re-
quiring that all quadcopter controllers are enabled under
Cθφ. That is, our goal is to build controllers D such that

SysPreserves I (Sys∆ (D ∧ Cθφ′)WQC) ∧
SysProgress I (Sys∆ (D ∧ Cθφ′))WQC)

For some state-constraints and their corresponding con-
trollers, it is only necessary to reason about an abstraction
of the quadcopter dynamics WQC . For example, reasoning
about a controller that enforces a bound on the vertical po-
sition z might only require reasoning about the portion of
the dynamics on which z depends. We formalize this with:

SysPreserves I (Sys∆ (D ∧ Cθφ′))W) ∧
SysProgress I (Sys∆ (D ∧ Cθφ′)W)
(WQC →W) ∧

` SysPreserves I (Sys∆ (D ∧ Cθφ′)WQC) ∧
SysProgress I (Sys∆ (D ∧ Cθφ′)WQC)

where WQC →W states that W is an abstraction of WQC .

5.1 Reuse via Substitution
Substitution of expressions for variables is a simple but

powerful operator that allows us to reuse controllers and
their properties. For example, substitution allows us to
perform familiar geometric transformations such as trans-
lations, reflections, scaling, and rotations. In addition, sub-
stitution allows us to project simple dynamics onto more
complex dynamics; a technique we use to build verified state-
constraining controllers for the quadcopter. We will explain
the general technique by using it to transport (re-use) the
second-derivative controller (M∂2), and its safety proof, to
enforce a maximum altitude for our quadcopter.

For a formula P and substitution σ (map from variables
to expressions), the semantic definition of substitution is:

tr |= {σ}P , {σ}tr |= P

which states that a substituted formula ({σ}P) holds on a
trace (tr) if the formula (P) holds on the renamed trace
({σ}tr). Under this definition, application of substitution
always guarantees preservation:

Theorem 2. SubstPreserves

` SysPreserves I S

` SysPreserves
(
{σ}I

) (
{σ}S

)
This proof rule allows us to easily transport ∂2-Preserves
to the quadcopter. For example, using it we can conclude

` SysPreserves
(
{σ∂2→QC}I∂2

) (
{σ∂2→QC}M∂2

)
σ∂2→QC , {a 7→ T cosφ cosθ − g, y 7→ z, v 7→ vz}

Note that the first argument to SysPreserves is the inductive
invariant for the new system, and can be read directly from
the conclusion of the preservation theorem. This is the case
for all of our preservation theorems.

Next, we need to justify the progress of the substituted
system. The interaction between substitution and progress
is a bit subtle because substitutions can introduce coupling
between values that were uncoupled before the substitution.
For example, (x′ = 1∧y′ = 0) is Enabled while {x 7→ z, y 7→
z}(x′ = 1 ∧ y′ = 0), which equals z′ = 1 ∧ z′ = 0, is not.

However, we can prove that invertible substitutions pre-
serve progress. This is because the inverse of the substitu-
tion is a function for computing the Enabledness witness for
the substituted system from the Enabledness witness for the
original system. Because of this, we can actually state a
stronger progress theorem for substitution, which captures
the fact that the inverse substitution preserves known con-
straints on Enabledness witnesses, such as Ca for the first and

second derivative controllers. As we will see, this is crucial
for proving the small-angle constraint (Cθφ). Formally,

Theorem 3. SubstProgress For all formulas S, state
formulas Q and R, and substitutions σ, if there exists a σ−1

such that R ` (σ ◦ σ−1)x = x for all variables x that occur
primed in S, and if R ` {σ−1}Q then

` SysProgress I (S ∧R′)
` SysProgress

(
{σ}I

) (
{σ}S ∧Q′

)
When we apply this theorem to prove the progress of the

quadcopter altitude controller, the following inverse works:

σ−1
∂2→QC , φ 7→ 0,θ 7→ 0,T 7→ a+ g,z 7→ y,vz 7→ v

We instantiate Q with Cθφ and R with Ca to guarantee

SysProgress I
(
Sys∆ ({σ∂2→QC}DM

∂2∧Cθφ
′) ({σ∂2→QC}W1D)

)
Finally, as noted above, we need to prove that WQC →
{σ∂2→QC}W1D, i.e. the continuous dynamics produced by
the substition is an abstraction of the full quadcopter dy-
namics. This reasoning involves standard substition within
differential equations, which we have formalized and proved
sound in Coq, and mechanical arithmetic reasoning.

Enforcing Planar Boundaries. Using our two substitu-
tion theorems, we can map the first- and second-derivative
controllers onto the quadcopter dynamics in many ways, al-
lowing us to verify many properties with relatively little
effort. We showed how to use it to implement an upper
bound on altitude. In general, we can use substitution on
the second derivative controller to enforce that the quad-
copter stays on one side of any 2D plane in 3D space. For
example, we can enforce a maximum-west boundary to pre-
vent the quadcopter from flying into a building. Similarly,
by applying substitution to the first-derivative controller we
can place bounds on velocity in any direction. The key is
that our two substitution theorems allow us to transfer the
correctness of any controller to work on a new dynamics that
can be constructed from an invertible substitution.

5.2 Disjunctive Composition
In this section we present rules to compose systems using

disjunction. For example, suppose that we wish to enforce a
rectangular no-fly zone centered around the origin (depicted
in Figure 3). A system can avoid the no-fly zone if at all
times it is to the north, the south, the east, or to the west
of the rectangle. We can build such a system by disjoining
subsystems MN , MS , ME , and MW , which are each built
from a substitution applied to M∂2 to enforce the north-
ern, southern, eastern, and western boundaries of the box,
respectively. As we will see, separately exposing preserva-
tion and progress allows us to define a disjunction operator
that is fully compositional and that permits the system to
transition from an inductive invariant of one subsystem to
another (e.g. north of the no-fly zone to west of the no-fly
zone) during a single trace; this would not be possible with
global invariant proofs.

The disjunctive composition of two systems is defined by
the ⊕ operator, which is indexed by the inductive invariants
of the two systems. Formally,

(Sys∆ D1 W) I1⊕I2 (Sys∆ D2 W) ,
Sys∆

(
(I1 ∧D1) ∨ (I2 ∧D2)

)
W

Safe RegionSafe Region

Restricted

Zone

Restricted

Zone

Intersection of inductive
invariantsMW

MN

MS
ME

Figure 3: Staying out of restricted airspace using
the disjunction of four controllers.

The inclusion of the inductive invariants in this definition
is essential to enforce the disjunction of the properties. To
see why, consider our example and suppose the system is
currently along the western edge of the no-fly zone. Since
the system is outside of the inductive invariant of the east-
ern controller, the eastern controller could allow the system
to do anything, including moving east into the no-fly zone.
Thus, at each discrete transition, the composed controller
must consider the discrete transitions of a sub-controller
whose inductive invariant currently holds. This guarantees
that the inductive invariant of that subsystem holds after the
transition. Moreover, it means that the system can transi-
tion from one inductive invariant to another, only where the
inductive invariants overlap.

This definition of disjunction is fully compositional with
both SysPreserves and SysProgress. In particular, the dis-
junctive composition of two systems that independently pre-
serve IA and IB preserves IA ∨ IB :

Theorem 4. DisjoinPreserves

SysPreserves IAA ∧ SysPreserves IB B
` SysPreserves

(
IA ∨ IB

) (
A IA⊕IB B

)
Using only this theorem we can easily construct a proof that
the disjunctive composition of our four controllers enforces
the no-fly zone property.

A similar theorem states that ⊕ guarantees SysProgress.

Theorem 5. DisjoinProgress

SysProgress IA A ∧ SysProgress IB B
` SysProgress (IA ∨ IB)

(
A IA⊕IB B

)
The proof follows from the fact that IA ensures the En-
abledness of A and IB ensures the Enabledness of B. Since
the new inductive invariant (IA ∨ IB) ensures that at least
one of IA or IB holds, at least one of A or B must be Enabled.

Disjunction is a very powerful composition mechanism
that is applicable in a wide variety of circumstances. For
example, we can use it to guarantee that a train can only
have a high velocity when it is not in a curve by composing
a maximum velocity controller with a controller that stops
the train before curves. A controller such as this one could
have prevented the Amtrak derailment in Philadelphia in
2015 that killed 8 people and injured 200.

5.3 Conjunctive Composition
In this section, we present rules to compose systems to

ensure the conjunction of their properties. For example, one
might want to ensure that a system’s upward velocity does
not exceed 1 m/s and that the system stays below 100m by
conjoining the first and second derivative controllers. Unlike
disjunctive composition, conjunctive composition of two sys-
tems satisfying progress does not guarantee a system satis-

fying progress, due to coupling. However, our ability to sep-
arately prove progress allows us to push forward. We show
that, even in coupled domains, conjunctive composition can
lead to substantial savings in proof effort, and demonstrate
some clever tricks that allow us to decouple domains that,
on the surface, seem intricately linked.

The conjunction of two systems is defined as follows:

Sys∆ D1 W1 ⊗ Sys∆ D2 W2 , Sys∆ (D1 ∧D2) (W1 ∧W2)

The crucial feature of this definition is how it interacts with
SysPreserves.

Theorem 6. ConjoinPreserves

SysPreserves IAA ∧ SysPreserves IB B
` SysPreserves

(
IA ∧ IB

) (
A⊗B

)
Intuitively, if we start in a state satisfying both IA and IB ,
A guarantees that we stay in IA, and B guarantees that we
remain in IB , then if both A and B hold, we must remain
in the intersection of IA and IB .

The difficulty of conjunctive composition lies in justify-
ing progress. Even though A and B may independently be
Enabled under the inductive invariant, there is no guaran-
tee that their conjunction is Enabled. For example, sup-
pose that we wish to compose an overly-conservative upper-
bound controller that insists on a negative acceleration and
a similarly conservative lower-bound controller that insists
on a positive acceleration. Since acceleration can not be si-
multaneously positive and negative, the conjunction of these
controllers does not satisfy progress.

Nevertheless, all is not lost when conjoining two systems.
There are a variety of techniques for proving Enabledness of
conjunctions. We will illustrate these techniques through
a sequence of examples, ultimately culminating in a 3D
bounding box for both position and velocity.

Example: Staying within an Interval. Consider con-
structing a controller that enforces both an upper and a
lower bound on both position (y) and velocity (v) in a sin-
gle spatial dimension. We can build such a controller (which
we call Int) using ⊗ and an application of our substitution
operator to the second- and first-derivative controllers:

Int , M∂2 ⊗ {σ−}M∂2 ⊗M∂ ⊗ {σ−}M∂

σ− , {y 7→ −y, v 7→ −v, a 7→ −a}

Here, the σ− substitution mirrors the controller’s logic so
that rather than enforcing an upper bound on y of yub (resp.
vy of vub), the substituted controller enforces a lower bound
on y of −yub (resp. vy of −vub).

The preservation of this composition follows immediately
from ConjoinPreserves, ∂2-Preserves, ∂-Preserves, and
SubstPreserves. However, since conjoined systems are not
guaranteed to satisfy progress, we must prove this sepa-
rately. Formally, we must prove progress of Int under the
conjunction of the inductive invariants of the subsystems:

SysProgress
(
I∂2 ∧ {σ−}I∂2 ∧ I∂ ∧ {σ−}I∂

)
Int

Informally, this states that, under the inductive invariant,
there exists an action that is acceptable to all of the (non-
deterministic) controllers. Unfolding the definitions and ap-
plying the substitution (σ−) reveals that the progress of Int
reduces to first-order reasoning over real arithmetic. At first
glance, it may seem as though modularity was a failure here;

however, by separating preservation and progress, the non-
modularity of progress did not prevent us from modularly
proving preservation. Moreover, our split crucially allows us
to assume the inductive invariant when proving progress.

This is in contrast to other work [4] where conjunctive
(parallel) composition is only allowed when the individual
modules output to disjoint sets of variables. Furthermore,
we found the proof of SysProgress IInt Int to be less than
one third the size of the proof of preservation of the indi-
vidual second-derivative controller M∂2 . This means that ⊗
greatly reduces the cost of conjoining systems, even when
these systems are tightly coupled.

In certain cases, our proof rules can be used to verify
progress compositionally. To demonstrate this, we turn to
the task of using our interval controller to modularly build
a bounding rectangular prism. We approach the problem in
three steps. First, we compose two interval controllers to
enforce a bounding box in two spatial dimensions. In the
next section, we adapt this controller to the quadcopter by
incorporating the small-angle constraint. Finally, we apply
the same technique to extend the 2D box into a 3D prism.

Example: Conjunction of Independent Systems. We
construct the box by conjoining two instances of Int, using
substitution to map them to the x- and z-dimensions respec-
tively.

Box , {σx}Int⊗ {σz}Int
σx , {y 7→ x, v 7→ vx, a 7→ ax}
σz , {y 7→ z, v 7→ vz, a 7→ az − g}

Verifying that Box enforces a bounding box is simply a mat-
ter of using ConjoinPreserves, SubstPreserves, and the
preservation proof of Int.

As others have noted [4], progress of conjoined systems
is compositional, if the two systems output to disjoint sets
of variables. In our logic, the output variables of a formula
are the next-state (primed) variables, whose disjointness is
expressed by A ⊥′ B. Formally,

Theorem 7. ConjoinProgressDisjoint For all systems
A and B such that A ⊥′ B, and for all state formulas IA
and IB,

SysProgress IA A ∧ SysProgress IB B
` SysProgress

(
IA ∧ IB

) (
A⊗B

)
From this theorem and variable disjointness, Box satisfies
progress for the dynamics with independent ax and ay.

Now suppose that instead of rectangular dynamics with
independent control inputs ax and ay, we want a controller
for polar coordinates with independent control inputs a and
θ. For example, these are the dynamics of a 2D version of
the quadcopter (with φ fixed at 0), in the absence of the
small-angle constraint. While the transformation to polar
coordinates seems to couple the x and z instantiations of Int,
there is always an invertible map from rectangular to polar
coordinates. This connection between polar and rectangular
coordinates allows us to use the substitution theorems from
Section 5.1 to prove both preservation and progress for a
version of Box that operates using polar thrust.

The takeaway is that although the system ({σθ}Box) is
not superficially composed of disjoint subsystems, we can
still verify both progress and preservation fully modularly.

Example: Incorporating the Small-angle Constraint.
The previous example ignored the small-angle constraint,

z

x
small-angle achievable

unconstrained axmin, a
z
min

independently
achievable

Figure 4: Decoupling of ax and az.

which is critical to the accuracy of our model of the quad-
copter’s dynamics. In this section we address this shortcom-
ing and complete the verification of Box with respect to a 2D
version ofWQC (again, with φ fixed at 0) in a fully modular
way. Figure 4 shows how the small-angle constraint intro-
duces coupling into the independent box. In particular, the
hatched region corresponds to the accelerations achievable
under the small-angle constraint while the unconstrained re-
gion corresponds to the accelerations necessary for Box de-
veloped in the previous section.

Our approach relies on a detail of the verification which
we glossed over in the previous presentation. In particular,
because the second-derivative controller is parameterized by
amin, Int is parameterized by an amin and Box is parameter-
ized by a pair of amin’s in the x and z dimensions. The right
side of Figure 4 shows how we leverage the parameterization
of Box to logically decouple the two dependent dimensions.
Our insight is the following. If we can pick values for axmin

and azmin (note that axmin and azmin are negative) such that all
accelerations ax and az where |ax| ≤ −axmin and |az| ≤ −azmin

are achievable by T and θ under the small-angle constraint
then the values of ax and az can be chosen independently if
they fall within the bounds. Purely trigonometric reasoning
reveals that the constraint on θ is achieved for any values of
ax and az satisfying Cx ∧ Cz defined as:

Cx , −(amin + g) tan 30◦ ≤ ax ≤ (amin + g) tan 30◦

Cz , amin ≤ az ≤ −amin

We can formalize this reasoning by noting that the pre-
vious example (Box), instantiated with the above choices of
axmin and azmin, satisfies progress under the constraint Cx ∧
Cz. Thus, we can use the substitution proof rule Subst-
Progress with a rectangular-to-polar substitution, instan-
tiating R with (Cx∧Cz) and Q with the small-angle condition
(ignoring φ since it is assumed to be 0 in this 2D example).

The important point of this verification is that the sepa-
ration of preservation and progress allowed for a relatively
small and modular proof of a complex property of a highly
coupled system. Without the separation of preservation and
progress, the coupling would have forced us to re-prove many
of the intermediate properties.

Example: Adding the Third Dimension. We can
build a controller enforcing a cube by conjoining Box with
another instance of Int substituted to reflect the y dimen-
sion. We can then apply this cube to the 3D version of
WQC (including φ and the coupling small-angle constraint).
Again, the modularity of our proofs shields us from much
of the complexity. Box enforced the constraints for x and
z using ax and az. Extending this to handle the third di-
mension simply requires that we use substitution to view ax

and az as a single unit and carry out the same reasoning,
independently controlling that composed unit and ay.

id: Name Built How? Symbols Proof
a: 1D vel bound From Scratch 43 130
b: 1D pos bound From Scratch 126 484
c: 1D interval ({}b)2 ⊗ ({}a)2 323 194
d: 2D square {}({}c)2 805 258
e: 3D cube {}(d⊗ {}c) 1353 201
f: 3D sqr donut {}e⊕ ...⊕ {}e 5412 23
g: 3D +, T, ⊥ {}e⊕ ...⊕ {}e 5412 23
h: 3D pilot box {}e⊕ ...⊕ {}e 5412 23

Figure 5: Systems implemented and proved correct.
The first column is the name of the system. The
second column shows how each system was built and
proved correct from smaller components. {}i indi-
cates a substitution applied to system i (we have
omitted the specific substitution); ⊗ represents con-
junction composition; and ⊕ represents disjunction
composition. The third and fourth columns show
the number of symbols in the discrete controller and
the number of lines of proofs, respectively.

6. EVALUATION

Proof Effort. Figure 5 lists all of the geo-fencing con-
trollers that we verified and flew, along with the composition
mechanism, proof size, and number of symbols in the dis-
crete transition for each one. The first 2 rows list controllers
that we ported from prior work; these are our atomic build-
ing blocks. The next 3 rows list controllers that we built
and verified using a combination of substitution and con-
junction. The remaining rows list controllers that we built
using disjunction and substitution.

Note that our 1D position controller (b in Figure 5) in-
volves 3 variables and 126 symbols and is a relatively simple
discrete transition requiring only multiplication and addi-
tion. However, verifying this position controller required
substantial, tedious, manual proof effort because of the dif-
ficulty of reasoning about nonlinear real arithmetic. On the
other hand, our 3D cube controller (e in Figure 5) contains 9
variables, 1353 symbols, trigonometric functions, and angu-
lar constraints. This increase in complexity is actually quite
daunting for two reasons: (1) arithmetic decision procedures
have very bad worst case complexity, and (2) trigonomet-
ric functions make the problem undecidable [14]. Despite
the massive increase in complexity, our modular verification
approach allowed us to verify the 3D version with only a
modest amount of additional manual proof effort.

Moreover, note that all controllers built using disjunction
require negligible proof effort on top of the effort required to
verify the individual components. This is because disjunc-
tion composes proofs of both preservation and progress.

Finally, it is worth noting that we have several admits in
our Coq development: (1) basic arithmetic theorems, (2)
some theorems bridging the gap between WQC and its ab-
stractions, (3) theorems stating progress of the continuous
transitions in the quadcopter model. Crucially, these admits
do not interfere with the core ideas that we are exploring,
namely modular reasoning about sampled-data systems.

Expressiveness. Disjunction is extremely powerful when
building real-world controllers. For example, we can build
up pixelated versions of arbitrary shapes by composing in-
stances of our cube controller. Interesting properties that

Verified
Control

Existing
Control
Software

User

Sensors

Attitude
Control

Motors

Figure 6: System architecture.

we can build with this include: (1) avoid no-fly zones such
as airports, the white house, etc, (2) do not fly within a box
surrounding the pilot, (3) stay away from static barriers such
as trees and buildings, and (4) avoid skyscrapers in a city.

Conjunctive composition is similarly expressive – the box
and the cube both make heavy use of conjunctive composi-
tion. Finally, substitution allows us to reuse all controllers
by translating and rotating them, and by transforming them
into controllers for different physical dynamics.

Behavior in Actual Flight. To make sure that our
controllers work well in practice, we manually translated
our models to C and ran them on a 3DR Iris+ quadcopter.
Figure 6 depicts the architecture of the system with one of
our controllers inserted. Our controllers check the outputs of
the pre-existing control software, potentially replacing them
with default safe values; this resolves the non-determinism
of the controller specifications. This architecture means that
the behavior of much of the existing control software (left
of “Verified Control”) cannot cause a violation of the fence.
Moreover, if the quadcopter remains sufficiently far from the
fence boundaries, the system behaves exactly as it would
without our controllers, so any performance properties of
the existing control software are preserved.

We flew our quadcopter with all controllers listed in Fig-
ure 5. All of the controllers enforced their respective bounds
with only minor violations, which can be attributed to un-
modeled forces such as wind and to modeling approxima-
tions such as instantaneous attitude changes. This final ap-
proximation has previously been justified empirically under
the small-angle constraint [13].

Comparison with fully automated tools. There are
a number of state-of-the-art tools that attempt to automat-
ically verify hybrid systems [11, 8, 17, 16], but due to the
complexity of the domain, they are limited to certain classes
of systems and properties.

PHAVer [11], which we ran through the SpaceEx tool plat-
form [29], is able to verify only one of our systems, namely
the combined upper and lower bound on velocity. However,
PHAVer is not able to verify the upper bound on velocity
in isolation, probably because there are fewer constraints on
acceleration to limit the search space, compared to the con-
troller that bounds velocity from above and below. Finally,
PHAVer is not able to run any of our other systems because
the discrete transitions involve non-linear arithmetic; ana-
lyzing these systems would require manual construction of
a linear overapproximation of the discrete transitions.

dReach [17] and Flow* [8] are bounded model checkers,
which means that they can conclude safety of a system
within a user-specified time bound. Our Coq proofs, on the
other hand, guarantee safety for infinite runs. It is possible
to use dReach and Flow* to guarantee safety for all runs by
manually providing the inductive invariant. In this way, our
results are complementary, as they provide a decomposition
technique to manage scalability issues of these tools. How-

ever, these tools are currently unable to handle universally
quantified variables with unbounded domains. This prevents
them from verifying safety of systems with symbolic param-
eters, such as amin – they require concrete numerical bounds
on these parameters, which weakens the safety theorem.

7. RELATED WORK
Hybrid Automata. Hybrid automata [15, 23] extend
traditional automata with continuous transitions. The pri-
mary reasoning method for hybrid automata is model check-
ing [11, 16]; however, the complexity of the domain restricts
these tools to certain classes of systems and properties. Alur
et al. [4] present rules for conjoining hybrid automata with
syntactically independent interface variables and for renam-
ing variables. Our substitution rules generalize substitution
in [4] to allow substituting expressions for variables, requir-
ing us to separately justify progress through invertibility of
substitution. Also, different modules often need to output
to the same actuators, and our work pushes beyond the re-
striction of syntactically independent variables. Finally, un-
like [4], we present rules for disjunctive composition.

Architectures for CPS. Several architectures have been
developed to guarantee safety properties of otherwise un-
trusted controllers [22, 27]. The protectors framework [22]
focuses only on conjunctive composition but not on disjunc-
tive composition, substitution, and the combination of all
three. Switching control [20] focuses on disjunctive compo-
sition. Our inclusion of invariants in the discrete controller
corresponds to expressing the switching boundary. However,
the focus of switching control theory is optimality, stability,
and transitionability, whereas we focus on complementary
properties like bounding the state space.

Logics for Hybrid Systems. Hybrid systems have been
formalized in proof assistants, including the HHL prover [21]
and using dL in KeYmaera X [25]. The dL logic has compo-
sitional proof rules; however, KeYmaera X is not as expres-
sive as Coq, and some of our proof rules are not expressible
in KeYmaera X, namely those with side conditions (e.g. in-
vertible substitutions, disjointness of primed variables). The
only way to add these rules to KeYmaera X would be to
extend its core with soundness-critical checking of side con-
ditions or to employ potentially slow and brittle tactics to
prove soundness of composition on a case-by-case basis. By
working in Coq, we are able to get higher-order modular
theorems without compromising soundness.

Hybrid systems have been formalized in general-purpose
proof assistants [30, 3, 24, 12, 9, 5, 26, 6]. [3] presents deduc-
tive reasoning rules and parallel composition, but does not
address progress or substitution and disjunction. Similarly,
[6] provides a rule for decomposing global safety proofs into
local invariant proofs, but does not address the interplay be-
tween composition and progress. Finally, [26] verified M∂2

and M∂ but did not compose them or address progress.

Temporal Logic. There has been a lot of work on com-
position in temporal logic, most notably by Abadi and Lam-
port [2, 1]. Their work describes how to reason about the
conjunction of LTL specifications, but they do not deal with
the interplay between conjunction and progress or substi-
tution and progress. Other work includes techniques for
decomposing LTL verification into a search for suitable bar-
rier certificates [31] and deductive rules for synthesizing con-

trollers satisfying ATL* properties [10]. While these ap-
proaches apply to more temporal logic formulas than ours,
they do not address verification using conjunction, disjunc-
tion, and substitution. There has also been work on synthe-
sis using approximate bisimulations [28]. We focus on the
complementary task of composing and reusing controllers.

Supervisory Control. Our theory is closely related to
the work on modular construction of nonblocking supervi-
sory controllers in discrete-event systems [32]. However, our
models explicitly include differential equations rather than
requiring a discrete abstraction and do not require a notion
of termination in a marked state. Moreover, to the best of
our knowledge, none of this work makes the inductive in-
variant explicit and separates preservation from progress.

8. CONCLUSION
We presented a modular technique for verification of sampled-

data systems implemented in the Coq proof assistant. The
crucial insight of our technique is the separation of preser-
vation and progress. We demonstrated the utility of this
approach by modularly building verified state-constraining
controllers for a quadcopter using three simple but powerful
operators: substitution, disjunction, and conjunction.

In the future, we are interested in verifying our controllers
composed with an attitude controller; translation to C code;
controller robustness; and other sampling policies.

Acknowledgments. This research was supported in part
by the National Science Foundation through grant 1544757.

9. REFERENCES
[1] M. Abadi and L. Lamport. An old-fashioned recipe for

real time. ACM Trans. Program. Lang. Syst.,
16(5):1543–1571, Sept. 1994.

[2] M. Abadi and L. Lamport. Conjoining specifications.
ACM Trans. Program. Lang. Syst., 17(3):507–535,
May 1995.

[3] E. Abraham-Mumm, U. Hannemann, and M. Steffen.
Verification of hybrid systems: formalization and
proof rules in PVS. In ECCS ’01, pages 48–57, 2001.

[4] R. Alur and T. A. Henzinger. Modularity for timed
and hybrid systems. In CONCUR ’97, volume 1243,
pages 74–88. Springer Berlin Heidelberg, 1997.

[5] A. Anand and R. Knepper. ROSCoq: Robots powered
by constructive reals. ITP’15, 15:2015, 2015.

[6] N. Arechiga, J. Kapinski, J. V. Deshmukh, A. Platzer,
and B. H. Krogh. Forward invariant cuts to simplify
proofs of safety. In A. Girault and N. Guan, editors,
EMSOFT, pages 227–236. IEEE, 2015.

[7] T. Chen and B. A. Francis. Optimal Sampled-Data
Control Systems. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1995.

[8] X. Chen, S. Sankaranarayanan, and E. Abraham.
Flow* 1.2: More effective to play with hybrid systems.
In ARCH14-15, volume 34 of EPiC Series in
Computing, pages 152–159, 2015.

[9] P. Collins, M. Niqui, and N. Revol. A Taylor Function
Calculus for Hybrid System Analysis: Validation in
Coq (Extended Abstract), 2010.

[10] R. Dimitrova and R. Majumdar. Deductive control
synthesis for alternating-time logics. EMSOFT ’14,
pages 14:1–14:10, New York, NY, USA, 2014. ACM.

[11] G. Frehse. PHAVer: algorithmic verification of hybrid
systems past HyTech. STTT, 10(3):263–279, 2008.

[12] H. Geuvers, A. Koprowski, D. Synek, and E. van der
Weegen. Automated machine-checked hybrid system
safety proofs. In ITP ’10, pages 259–274, 2010.

[13] J. H. Gillula, G. M. Hoffmann, H. Haomiao, M. P.
Vitus, and C. J. Tomlin. Applications of hybrid
reachability analysis to robotic aerial vehicles. The
International Journal of Robotics Research,
30(3):335–354, 2011.

[14] J. Harrison. Handbook of Practical Logic and
Automated Reasoning. Cambridge University Press,
New York, NY, USA, 1st edition, 2009.

[15] T. A. Henzinger. The theory of hybrid automata. In
LICS ’96, pages 278–292, 1996.

[16] T. A. Henzinger, P. Ho, and H. Wong-Toi. HYTECH:
A model checker for hybrid systems. In CAV ’97, 1997.

[17] S. Kong, S. Gao, W. Chen, and E. Clarke. dReach:
δ-Reachability Analysis for Hybrid Systems. pages
200–205. Springer Berlin Heidelberg, 2015.

[18] L. Lamport. The temporal logic of actions. TOPLAS,
16(3):872–923, 1994.

[19] L. Lamport. Real time is really simple. Technical
report, MSR-TR-2005-30, Microsoft Research, 2005.

[20] D. Liberzon. Switching in systems and control.
Springer Science & Business Media, 2012.

[21] J. Liu, J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou,
and L. Zou. A Calculus for Hybrid CSP. APLAS’10,
pages 1–15, Berlin, Heidelberg, 2010. Springer-Verlag.

[22] C. Livadas and N. A. Lynch. Formal verification of
safety-critical hybrid systems. In HSCC ’98, 1998.

[23] N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O
Automata. Inf. Comput., 185(1):105–157, Aug. 2003.

[24] M. Niqui and O. Tveretina. Modular Development of
Hybrid Systems for Verification in Coq. In HSCC ’08,
HSCC ’08, pages 638–641. Springer-Verlag, 2008.

[25] A. Platzer. KeYmaera X: A Hybrid Systems Theorem
Prover. http://www.ls.cs.cmu.edu/KeYmaeraX/.
Accessed: 2015-04-28.

[26] Ricketts, D., Malecha, G., Alvarez, M., Gowda, V.,
Lerner, S. Towards Verification of Hybrid Systems in a
Foundational Proof Assistant. In MEMOCODE, 2015.

[27] L. Sha, R. Rajkumar, and M. Gagliardi. Evolving
dependable real-time systems. In Aerospace
Applications Conference, pages 335–346. IEEE, 1996.

[28] P. Tabuada. An approximate simulation approach to
symbolic control. IEEE Transactions on Automatic
Control, 53(6):1406–1418, July 2008.

[29] G. F. et al. SpaceEx: Scalable Verification of Hybrid
Systems. CAV’11. Springer-Verlag, 2011.

[30] N. VÃűlker. Towards a HOL Framework for the
Deductive Analysis of Hybrid Control Systems, 2000.

[31] T. Wongpiromsarn, U. Topcu, and A. Lamperski.
Automata theory meets barrier certificates: Temporal
logic verification of nonlinear systems. IEEE
Transactions on Automatic Control, PP(99):1–1, 2015.

[32] W. M. Wonham and P. J. Ramadge. Modular
supervisory control of discrete-event systems.
Mathematics of Control, Signals and Systems, 1988.

http://www.ls.cs.cmu.edu/KeYmaeraX/

	Introduction
	Overview
	Sampled-data Systems
	A Modular Basis for Reasoning
	Modular Sampled-data Systems
	Reuse via Substitution
	Disjunctive Composition
	Conjunctive Composition

	Evaluation
	Related Work
	Conclusion
	References

