
Compositional Computational Reflection

Gregory Malecha1, Adam Chlipala2, and Thomas Braibant3

1 Harvard University SEAS, Cambridge, MA, USA
gmalecha@cs.harvard.edu

2 MIT CSAIL, Cambridge, MA, USA
adamc@csail.mit.edu

3 INRIA, Rocquencourt, France
thomas.braibant@inria.fr

Abstract. Current work on computational reflection is single-minded;
each reflective procedure is written with a specific application or scope
in mind. Composition of these reflective procedures is done by a proof-
generating tactic language such as Ltac. This composition, however,
comes at the cost of both larger proof terms and redundant prepro-
cessing. In this work, we propose a methodology for writing compos-
able reflective procedures that solve many small tasks in a single invoca-
tion. The key technical insights are techniques for reasoning semantically
about extensible syntax in intensional type theory. Our techniques make
it possible to compose sound procedures and write generic procedures
parametrized by lemmas mimicking Coq’s support for hint databases.

Keywords: Computational reflection · automation · Coq · verification

1 Introduction

Imperative program verification requires orchestrating many different reasoning
procedures. For it to scale to more sophisticated languages and larger programs,
these procedures must be efficient. When using a proof assistant, a popular way
to achieve good performance is with computational reflection [2], a technique for
discharging proof obligations by running verified programs implemented in the
proof assistant’s logic.

While individually these procedures are fast, composing them relies on non-
reflective, proof-generating tactic languages like Ltac [7]. While simple and flex-
ible, this method is expensive. The brunt of the cost of computational reflection
is in setting up the procedure and constructing the proof term; the actual com-
putation is often relatively cheap. Composing many small reflective procedures
requires paying this price for many moderately sized proof obligations rather
than once for the entire goal.

To achieve this composition without returning to the non-reflective world,
high-level reflective procedures must support extension in order to reason about
domain-specific problems. Tactic-based languages support patterns such as higher-
order tactics and hint databases that allow extending automation after the fact.

2 Malecha, Chlipala, Braibant

u
se

r
p
re

d
ic

a
te

re
fi
n
em

en
t

h
in

ts
co

m
b
in

e
h
in

ts

q
u
a
n
ti

fi
ed

in
va

ri
a
n
ts

prove using hints

Specification & Implementation

Definition bstM : bmodule := {
bfunction "lookup"("s", "k", "tmp") [lookupS]
"s" ←∗ "s";;
[∀ s, ∀ t,
PRE[V] bst’ s t (V "s") ∗ mallocHeap
POST[R] d (V "k" ∈ s) \is R e ∗

bst’ s t (V "s") ∗ mallocHeap]
While ("s" 6= 0) {
"tmp" ←∗ "s" + 4;;
If ("k" = "tmp") {
Return 1 (* Key matches! *)
} else {
If ("k" < "tmp") {
"s" ←∗ "s" (* Lower key *)
} else {
"s" ←∗ "s" + 8 (* Higher key *)
}
}
};;
Return 0
}.

Domain-Specific Hints & Proof

(* Representation predicate for BSTs *)
Definition bst (s : set) (p : W) :=
d freeable p 2 e ∗ ∃ t, ∃ r, ∃ junk,

p 7→ r ∗ (p +̂ $4) 7→ junk ∗ bst’ s t r.

(* A standard tree refinement hint *)
Theorem nil_fwd : ∀ s t (p : W), p = 0 →
bst’ s t p =⇒ d s ' empty ∧ t = Leaf e.

Proof. destruct t; sepLemma. Qed.
(* . . .more hints. . . *)

(* Combine the hints into a package. *)
Definition hints : HintDatabase.
prepare (nil_fwd, bst_fwd, cons_fwd)

(nil_bwd, bst_bwd, cons_bwd).
Defined.

(* Prove partial correctness. *)
Theorem bstMOk : moduleOk bstM.
Proof. vcgen; abstract (sep hints; auto). Qed.

Fig. 1. Verified implementation of binary search trees implementing finite-set “lookup”.

For example, Coq’s autorewrite tactic is based on hint databases that package
together a collection of rewrites and associated tactics to solve side conditions.
These features, however, have not made their way to reflective procedures.

In this work, we focus on building extensible reflective procedures that per-
form many reasoning steps in a single invocation. Figure 1 demonstrates the
degree of automation that we achieve applying our techniques to program veri-
fication in Bedrock [4], a Coq [6] library for low-level, imperative programming.
Note that the implementation is completely separated (with the exception of loop
invariants) from the automated verification. Effective automation for verifying
such a program requires simultaneously reasoning about abstract predicates,
low-level machine words, and high-level sets. To that end, our automation (sep)
is written modularly and composed into large reflective procedures. Reasoning
for problem-specific constructs is incorporated via HintDatabases that are con-
structed completely automatically from both fully verified reflective procedures
(similar to Ltac’s Hint Extern) and guarded rewriting lemmas (similar to Ltac’s
Hint Rewrite . . . using . . .). The latter of these is constructed completely auto-
matically from standard lemmas like nil_fwd above, which drastically lowers the
overhead of applying our automation to reason about new abstract predicates.

In the rest of the paper we discuss the techniques that we have developed to
support that kind of sophisticated reasoning reflectively. We begin with a short
primer on computational reflection (Section 2) before discussing our technical
contributions, which correspond to the features of our reflective procedures:

– Our proof procedures reason extensively about two forms of variables (Sec-
tion 3.2): variables introduced by existential quantifiers in the goal and uni-
fication variables introduced by Ltac before our reflective procedures run.

– Our proof procedures reason semantically about an open-ended set of symbols
and types (Section 3.3). Our approach allows us to build independent pro-

Compositional Computational Reflection 3

Inductive sexpr := (* syntactic separation logic formulas *)
| Star (l r : sexpr) | Opaque (p : nat) | Emp.

Fixpoint sexprD (ps : list hprop) (s : sexpr) : hprop :=
match s with
| Star l r ⇒ sexprD ps l ∗ sexprD ps r
| Opaque f ⇒ nth_with_default (default := d False e) ps f
| Emp ⇒ ∅
end.

Definition check_entailment (l r: sexpr): bool := (* reflective procedure *)

Theorem check_entailment_sound : ∀ ps lhs rhs, (* soundness proof *)
check_entailment lhs rhs = true →
sexprD ps lhs ` sexprD ps rhs. (* separation-logic entailment *)

Listing 1. A reflective entailment checker for propositional separation logic.

cedures for reasoning about different domains, such as lists and bit-vectors,
and compose them after the fact.

– Finally, our proof procedures are easy to customize and extend without know-
ing about the details of reflection. One drawback of reflective verification has
been the need to write and verify programs in order to extend the automa-
tion. Combining the above techniques, we have built a more elementary
interface that allows users to construct verified hint databases from Coq
theorems completely automatically and pass them to generic reflective au-
tomation that applies the theorems (Section 3.4).

After presenting our technical contributions, we evaluate the performance
and power of our automation (Section 4) and discuss related work (Section 5).
Our techniques are implemented in the MirrorShard library that lays the foun-
dation for the Bedrock automation. Both repositories are available online.

https://github.com/gmalecha/mirror-shard/

https://github.com/gmalecha/bedrock-mirror-shard/

2 Simple Entailment: A Computational Reflection Primer

Before diving into the novel bits, we sketch the high-level approach of computa-
tional reflection. We use entailment checking in a toy fragment of propositional
separation logic [16] as our running example. Separation logic describes the pro-
gram state compositionally by splitting it into disjoint pieces using the separating
conjunction (notated ∗), which has the empty state (notated ∅) as its unit. For
example, the formula P ∗Q∗R∗∅ states that the entire program state can be di-
vided into three disjoint parts described respectively by the opaque propositions
P , Q, and R.

The first step in using computational reflection is to define a syntactic (called
“reified”) representation of formulas (sexpr); Listing 1 shows the code. The
denotation function (sexprD) formalizes its meaning. Star and Emp represent ∗
and ∅ respectively; while Opaque n, for some index n, represents an uninterpreted
proposition in the ps environment, e.g. P , Q, and R above. This indirection

https://github.com/gmalecha/mirror-shard/
https://github.com/gmalecha/bedrock-mirror-shard/

4 Malecha, Chlipala, Braibant

provides a decidable equality on sexpr, which allows us to detect (conservatively)
when two opaque propositions are equal. When ps does not contain a value for
an index, our denotation function uses dFalsee, a contradictory assertion.

Next we write a function (check_entailment) that determines whether the
entailment is provable. Our simple algorithm erases all ∅ terms and crosses com-
mon terms off both sides of the entailment. If both sides wind up empty, then the
entailment is provable. In order to use the procedure to prove an entailment, we
prove a derived proof rule (the Coq theorem check_entailment_sound). The
premise to this inference rule asserts that the function returns true, which can be
checked efficiently by running the computation. If the result is true, the premise
is justified by the reflexivity of equality. Notice that arbitrary entailments can
be proved using this theorem by (1) reifying their syntax into the sexpr type
and (2) applying the theorem with the quantifiers instantiated appropriately.

3 Composing Procedures

The entailment checker in the previous section is a good start, but it is not up to
the challenges of program verification. Throughout this section we discuss how
our technical contributions enable us to take it from a toy decision procedure to
an extensible entailment checker capable of proving complex goals.

3.1 Syntax

Before we present our technical contributions, we set the stage with some more
conventional elements of our syntax (shown in Listing 2).

The biggest inadequacy of the syntax presented in Section 2 is the represen-
tation of predicates. To illustrate the problem, consider the proposition p 7→ x,
expressing that the pointer p points to the value x. In the previous syntax this
formula might be represented as Opaque 1, making it impossible to determine
equivalence with p + 0 7→ x, which would be reified using a different index, e.g.
as Opaque 2, since the terms are not syntactically equal.

To address this problem, we replace Opaque n with Pred n xs where xs

is a list of arguments to the nth predicate. Because these arguments are not
separation-logic formulas, we introduce a second syntactic category (expr) to
represent them. We could stop here if all arguments to predicates were e.g.
machine words, which would be quite restrictive. To enable expr to represent
expressions of an open set of types, we introduce a third syntactic category for
types (typ) and an associated denotation function (typD). This denotation func-
tion shows up in the return type of exprD, which determines the meaning of a
syntactic expression at a given (syntactic) type. When the expression does not
have the given type, exprD returns None, signaling a type error.

Our new syntax also supports constants using the Const constructor of expr.
While constants are special cases of 0-ary function symbols, distinguishing them
allows our reflective procedures to compute with them. The price that we pay
for this flexibility is an additional parameter (ts, introduced by the Variable

Compositional Computational Reflection 5

Inductive typ := tyProp | tyType (idx : nat). (* type syntax *)
Variable ts : list Type. (* remaining definitions are parametrized by ts *)
Definition typD (t : typ) : Type :=
match t with
| tyProp ⇒ Prop
| tyType i ⇒ nth_with_default (default := Empty_set) ts i
end.

Inductive expr := (* expression syntax *)
| Func (f : nat) (args : list expr) | Equal (t : typ) (l r : expr)
| Const (t : typ) (val : typD t) | Var (idx : nat) | UVar (idx : nat).

Definition env := list { t : typ & typD t }. (* variable environments *)

Record func := (* syntactic functions *)
{ Args: list typ; Range: typ; Impl: fold_right (→) (typD Range) (map typD Args) }

Definition exprD (fs: fenv) (us vs: env) (e: expr) (t: typ)
: option (typD t) := . . .

Inductive sexpr := (* separation logic syntax *)
| Star (l r: sexpr) | Pred (p: nat) (args:list expr) | Emp | Inj (p: expr)
| Exists (t : typ) (s : sexpr).

Record pred := (* syntactic separation logic predicates *)
{ PArgs : list typ ; PImpl : fold_right (→) hprop (map typD PArgs) }.

Definition sexprD (fs : fenv) (ps : penv) (us vs : env) (e : sexpr) : hprop := . . .

Listing 2. Our three-level, extensible syntax & its denotation.

line) to expr and sexpr to represent the type environment. Beyond constants,
we also support injecting propositions into separation-logic formulas using Inj

and polymorphic equality using Equal in expr. The latter is important since
our extensible function environment does not support polymorphic definitions,
an issue we discuss in more detail in Section 4.3.

The final syntactic forms are for binders and are discussed in the next section.

3.2 Binders & Unification Variables

Existential quantification is common in verification conditions for functional cor-
rectness, especially when reasoning about data abstraction. As a result, quanti-
fier support is essential to fully reflective reasoning.

Our syntax supports existential quantifiers in separation-logic formulas using
the Exists constructor. Syntactically, variables are represented using de Bruijn
indices, and the environment (vs : env) is encoded as a list of dependent pairs
of values and their syntactic types. The denotation of an existential quantifier
prepends the quantified value to the variable environment, while the denotation
of a variable looks up the value and checks it against the expected type.

The final syntactic form, UVar, represents Coq unification variables, which
are placeholders for currently unknown terms. Our procedures determine appro-
priate values for these variables using a reflective unification procedure coded
in Gallina. As we will see in Section 3.4, our ability to implement unification
reflectively is a powerful feature of our approach.

6 Malecha, Chlipala, Braibant

p, q, r : word (1)
?1 : word
=======================
p 7→ q ∗ ∃ x, q 7→ x
` p 7→ ?1 ∗ ∃ y, ?1 7→ y ∗ ∃ z, r 7→ z

p, q, r : word (3)
?1 : word
=======================
∀ x, ∃ y, ∃ z, ?1 = q ∧ y = x ∧

(p 7→ q ∗ q 7→ x
` p 7→ q ∗ q 7→ x ∗ r 7→ z)

p, q, r : word (2)
?1 : word
=======================
∀ x, ∃ y, ∃ z,

(p 7→ q ∗ q 7→ x
` p 7→ ?1 ∗ ?1 7→ y ∗ r 7→ z)

p, q, r : word (4)
x : word (* from [∀ x] *)
?2 : word (* from [∃ z] *)
=======================
p 7→ q ∗ q 7→ x
` p 7→ q ∗ q 7→ x ∗ r 7→ ?2

Fig. 2. Representation of quantifiers and unifications as they pass through our verifi-
cation procedures: (a) initial goal; (b) result of lifting quantifiers; (c) direct output of
the unification procedure; (d) after simplification with Ltac.

Figure 2 shows how our reflective procedures manipulate quantifiers and
unification variables that occur in entailments. Note that while we show each
step as an individual goal, all of the steps except the last are performed within
a single reflective call.

Box (1) A simple entailment that might be passed to our reflective checker. As
in Coq, unification variables are prefixed with question marks. For clarity, we
include them explicitly above the line, implicitly representing their contexts as
the identifiers that occur above them4. For example, the term used to instantiate
?1 can mention any of p, q, and r.

Box (2) The normal form that our procedures use lifts quantifiers to the top.
Existentials to the left are introduced as Vars that are universally quantified,
while those to the right are represented as UVars and are existentially quantified.
Here, the leading quantifiers are represented syntactically as lists of types, and
the denotation function interprets them with the appropriate quantifiers.

Box (3) The result of unification is an instantiation of the unification variables.
Semantically, this instantiation is a conjunction of equations, each between a
unification variable and its instantiation. Here we see that ?1 was unified with q,
and the value of the existentially quantified y has been chosen to be the newly
introduced x.

Box (4) From here we cannot go any further reflectively, since unification vari-
ables only exist at the meta-level and thus cannot be manipulated in Coq’s logic
Gallina. Post-processing with Ltac cleans up the goal in Box (3) to look like the
goal in Box (4). In particular, universally quantified variables are pulled into
the context; unification variables are constructed for leading existentials using
eexists; and instantiations are side-effected into the proof state by solving leading
equations using reflexivity5.

4 The context of unification variables is not given to our procedures. They make the
simplifying assumption that all terms are available in all contexts.

5 If our reflective procedure instantiates a unification variable using terms outside of
its context, reflexivity will fail, leaving the (likely unsolvable) goal to the user.

Compositional Computational Reflection 7

3.3 Compositional Semantic Reasoning

Only a small subset of operators are explicit in the syntax; the rest are rep-
resented by Func and Pred. For example, when we reason about the expres-
sion Star x y, the denotation, eliding the environments, is sexprD x ∗ sexprD
y. However, when we reason about the expression Func 0 [x;y] , the denotation
becomes, again eliding the environments and the error-handling code, (getFunc
fs 0) (exprD x) (exprD y). To reason about the latter, we must express these
assumptions as premises to the soundness proof.

To explain our technique for expressing these constraints, we introduce the
following simple procedure for reasoning about the commutativity of addition.

Definition prove_plus_comm ts (e : expr ts) : bool :=
match e with

| Equal 1 (Func 0 [x ; y]) (Func 0 [y’ ; x’]) ⇒ expr_eq x x’ && expr_eq y y’
| _ ⇒ false

end.

Already this procedure makes the assumption that nat is at type index 1 and
plus is at function index 0. We could prove this procedure sound for the envi-
ronments [bool;nat] and [plus], but this proof would not be useful for extended
environments. To develop reflective procedures independently and link them to-
gether after the fact, we need a compositional way to express these assumptions.

Our approach is to use a computational, rather than propositional, constraint
formulation. To express constraints computationally, we quantify over an arbi-
trary environment and compute a derived environment that manifestly satisfies
the constraints and is otherwise exactly the same as the original. The following
function derives an environment from e that is guaranteed to satisfy c.

Fixpoint applyC (T: Type) (d : T) (c: constraints T) (e: list T) : list T :=
match c with

| nil ⇒ e

| Any :: c’ ⇒ hd_with_default (default := d) e :: applyC T d c’ (tl e)
| Exact v :: c’ ⇒ v :: applyC T d c’ (tl e)
end.

To see applyC in action, we return to our example and declare the type
environment constraints for the commutativity prover. Note that by using Any

in position 0, we allow other procedures to choose a meaning for tyType 0.

Let TC : constraints Type := [Any; Exact nat].

Next we state the constraints for the function environment, which requires a
syntactic representation of the plus function. Since the type of this syntac-
tic representation depends on the type environment, we apply our technique,
parametrizing by an arbitrary environment and retrofitting it with our con-
straints via applyC. In code:

Definition plus_fn (ts : list Type) : func (applyC TC ts) :=
{ Args := [tyType 1; tyType 1] ; Range := tyType 1 ; Impl := plus }.

8 Malecha, Chlipala, Braibant

This term type checks because applyC and typD reduce, making the following
equations hold definitionally.

typD(applyCTC ts)(tyType 1) ≡ typD (hd d ts :: nat :: tl (tl ts)) (tyType 1) ≡ nat

The essential enabling property of applyC is that when c is a cons cell, the result
is syntactically a cons cell and is not blocked by a match on e.

If we had stated the property propositionally and proved the equality, then
Impl would require an explicit cast, like so.

Definition plus_fn_bad ts (pf : TC |= ts) : func ts := (* |= is ‘holds on’ *)

{ Args := [tyType 1; tyType 1] ; Range := tyType 1
; Impl := match compatible_reduces pf in _ = t return t → t → t with

| eq_refl ⇒ plus end }.

Reasoning about casts in intensional type theory is difficult because the dis-
criminee of the match must reduce to a constructor before the match can be
eliminated. This behavior blocks conversion, making “seemingly equal” terms
unequal. Our technique, on the other hand, does not even manifest the cast.

Using these definitions, we can prove the soundness of our simple commuta-
tivity prover using the following theorem statement.

Let FC ts : constraints (function (applyC TC ts)) := [Exact (plus_fn ts)].
Theorem prove_plus_comm_sound

: ∀ (ts : list Type), let ts’ := applyC TC ts in

∀ (fs : functions ts’), let fs’ := applyC FC fs in

∀ e1 e2, WellTyped ts’ fs’ e1 (tyType 1) → WellTyped ts’ fs’ e2 (tyType 1) →
prove_plus_comm e1 e2 = true →
exprD ts’ fs’ e1 (tyType 1) =nat exprD ts’ fs’ e1 (tyType 1).

With this formulation, getFunc fs’ 0 reduces to plus, making the proof follow
from the commutativity of plus; a simple proof for a simple property.

∀ fs, let fs’ := applyC FC fs in (getFunc fs’ 0) x y = (getFunc fs’ 0) y x

≡ ∀ fs, x + y = y + x

The fact that applyC c l = l when c |= l justifies the completeness of the
technique. Any theorem that is provable with the propositional formulation is
also provable with our computational formulation.

Composition. applyC’s computational properties make it well-suited for compo-
sition. When two constraints are compatible, i.e. they do not specify different
values for any index, applyC commutes definitionally.

applyCC1 (applyCC2 e) ≡ applyCC2 (applyCC1 e)

We can leverage this property for easy composition of functions and proofs
without needing to reason about casts. For example, suppose we have two func-
tions (analogously proofs) phrased using applyC, say p1 and p2, with different,
but compatible, constraints TC1 and TC2. Composing each function with the
application of the other’s constraints gives us the following:

Compositional Computational Reflection 9

(fun ts ⇒ p1 (applyC TC2 ts)) : ∀ ts, expr (applyC TC1 (applyC TC2 ts)) → bool

(fun ts ⇒ p2 (applyC TC1 ts)) : ∀ ts, expr (applyC TC2 (applyC TC1 ts)) → bool

Since these types are definitionally equal, we can interchange the terms, for ex-
ample, adding them to the same list or composing them via a simple disjunction
without the need for explicit proofs or explicit casts:

Definition either ts (p1 p2 : expr ts → bool) (e : expr ts) : bool := p1 e || p2 e.

Packaging. To simplify passing provers around, we package them with their
constraints and their soundness proofs using Coq’s dependent records6.

Record HintDatabase :=
{ Types : constraints Type

; Funcs : ∀ ts, constraints (func (applyC Types ts))
; Prover : ∀ ts, ProverT (applyC Types ts)
; Prover_sound : ∀ ts fs,
ProverOk (applyC Types ts) (applyC (Funcs ts) fs) (Prover ts) }.

The first two fields represent the constraints for the type and function envi-
ronments, with the latter phrased using our technique. The Prover field would
contain the functional prover code, e.g. prove_sum_comm wrapped in our prover
interface. The final field, Prover_sound, would contain the proof that the pro-
cedure is sound, derived from prove_sum_comm_sound.

To invoke a reflective procedure with a particular hint database, we rely on
Ltac to handle the constraints. For example, the top-level soundness lemma for
cancellation has the following form:

Theorem Apply_cancel_sound ts (fs : fenv ts)
(prover : ProverT ts) (prover_ok : ProverOk ts fs prover)

: ∀ (lhs rhs : sexpr ts) (us vs : env ts), . . .

To apply such a theorem, our reification process projects out the constraints
from the hint database and uses them as base environments when constructing
the syntactic terms. We can then instantiate the prover and its soundness proof
to work on the extended environments (distinguished using primes) by simple
application.

Apply_cancel_sound ts’ fs’
(hints.(Prover) ts’ : ProverT ts’ (*≡ProverT (applyC hints.(Types) ts’)*))
(hints.(Prover_sound) ts’ fs’ : ProverOk ts’ fs’) . . .

Taking a closer look at the types we notice that the definition of applyC justifies
the type assertions for the final two arguments. For example, the third argument
actually has type ProverT (applyC hints.(Types) ts’), but since we construct
ts’ to retain the entries of hints.(Types), this type is definitionally equal to
ProverT ts’.
6 The HintDatabase record in MirrorShard contains an additional field for the con-

straints on the predicate environment, but our example does not require it.

10 Malecha, Chlipala, Braibant

3.4 Generic Extension with Reified Lemmas

Writing and verifying reflective procedures can be cumbersome. For example,
when verifying linked data structures like lists, the automation often requires
rewriting by a separation-logic entailment. If each new entailment lemma re-
quired writing and verifying a new reflective procedure, users would spend more
time building automation than using it. In Ltac, the sort of generic procedure we
want is provided by the parametrized tacticals rewrite or autorewrite. In this
section we show how the techniques from the previous two sections allow us to
implement a generic, reflective rewriting procedure for separation-logic formulas
that is parametrized by a list of lemmas to rewrite with.

As with all reflective tasks, the first hurdle is the representation. The variable-
related features from Section 3.2 provide a simple way to represent lemmas.

Record lemma (ts : list Type) := (* Example: *)

{ Foralls : list typ (* ∀ x ls, *)

; Hyps : list (expr ts) (* x = 0 → *)

; Lhs : sexpr ts ; Rhs : sexpr ts }. (* llist x ls ` d ls = nil e *)

Definition lemmaD ts (fs : fenv ts) (ps : penv ts) (l : lemma) : Prop :=
forallEach ts l.(Foralls) (fun vs ⇒
implEach ts fs nil vs l.(Hyps)

(sexprD ts fs ps nil vs l.(Lhs) ` sexprD ts fs ps nil vs l.(Rhs))).

The function lemmaD translates a reified lemma statement into a Gallina propo-
sition. Here, forallEach introduces universal quantifiers for the given types,
packaging the quantified variables into an environment (vs) that it passes to the
continuation. This environment is then used as the variable environment for the
premises (denoted using implEach) and the conclusion.

We reduce the problem of determining when a lemma can be used to a
unification problem. Our procedure replaces the universally quantified Vars in
the lemma statement with UVars, setting up a unification “pattern.” This pattern
is then passed to the unification procedure that we mentioned in Section 3.2.
If unification succeeds, we get a substitution that we can use to instantiate the
lemma. Using provers like prove_plus_comm from the previous section allows us
to discharge the premises. If all of the premises are discharged, we can replace
the candidate term completely reflectively. Our rewriting procedure is able to
rewrite in the premise and in the conclusion reusing mostly the same code and
proofs in both cases.

The most difficult part of the proof lies in justifying the existence of values
for the quantified variables. The unification procedure returns the expressions
to use but, in order to support finding them incrementally, it only guarantees
that they are well-typed in the environment that contains the new unification
variables. Justifying that these expressions do not mention the new unification
variables requires reasoning about the acyclicity of the instantiation, which is
guaranteed by the occurs check in the unification algorithm. While complex, this
proof is done once and used whenever we need to type-theoretically strengthen
the result of unification.

Compositional Computational Reflection 11

ReflectiveLtac
VC Gen

Higher-Order
Reasoning

Symbolic
Execution

Entailment
Checking

Higher-Order
Reasoning

Theory Prover

Percent of time per phase

VCGen SymEval Entail. Ltac

0

20

40

60

80

5.04 6.72

16.59

71.65

Fig. 3. Verification process and the breakdown of verification time.

To make rewriting hints easy to use, we have completely automated the
construction of syntactic lemmas and their composition into (an extended version
of) the hint databases described in the previous section. These extended hint
databases carry two lists of lemmas, one for forward rewriting and the other for
backward rewriting, as well as their corresponding proof terms.

4 Evaluation & Discussion

The techniques in Sections 3.2-3.4 form the core insights of the MirrorShard
framework. In this section we discuss our results applying this framework to
verify programs written in the Bedrock system. We begin with an overview of the
end-to-end verification process before justifying our claims from the introduction
about the benefits of building broader reflective procedures.

We restrict our evaluation to a collection of data structure libraries including
a memory allocator, linked-list operations, sets implemented as unsorted lists and
binary trees, and queues. Together, these constitute approximately 355 lines of
code that generate 253 verification conditions. The source code to these examples
is found in the examples directory of our bedrock-mirror-shard repository.

4.1 The Verification Procedure

The end-to-end automation that verifies an entire Bedrock module is broken
down into three independent, reflective tasks (verification condition generation,
symbolic execution, and entailment checking) punctuated by Ltac-based higher-
order reasoning. Figure 3 shows the overall process. We focus on the latter two
tasks that, combined, apply to a single verification condition. Each verification
condition assumes a precondition and that a particular code path is followed.
The obligation is to show either that the code runs without errors (progress) or
finishes in a state satisfying some postcondition (preservation). We focus on the
second case since it is more interesting.

To solve a preservation verification condition, symbolic execution runs to
compute the (strongest) postcondition of the path under the precondition. Next,
an Ltac tactic runs to determine the postcondition. We use Ltac because we

12 Malecha, Chlipala, Braibant

may require non-trivial higher-order reasoning (for instance, if the postcondi-
tion comes from the spec of a first-class function being called). This step reduces
the goal to a separation-logic entailment that is discharged by our entailment
checker. Because higher-order function specifications may involve nested asser-
tions about specifications for other functions, entailment checking and the Ltac
for higher-order reasoning run in a loop. Finally, user-defined Ltac runs to dis-
charge any side conditions that could not be solved by our reflective procedures.
In practice, these side conditions tend to be the pure parts of specifications, e.g.
reasoning about Coq’s length function when verifying its Bedrock implementa-
tion.

Figure 3 shows how the verification time is distributed between the different
phases across our data-structure examples. Note that while our reflective proce-
dures end up doing most, if not all, of the heavy lifting, almost three-quarters
of our verification time is spent running Ltac, suggesting that while we could
further optimize our reflective procedures, the biggest improvements would come
from making more of the verification reflective.

4.2 Reflective Performance

Previous work [2,11] has demonstrated the performance and scaling benefits
of reflective automation, and our work enjoys similar benefits. More central to
our thesis is the benefit of reflective composition and user extension, which we
evaluate in the context of symbolic execution.

Consider the following path through the length function for linked lists:

assume(∗(Sp+4) 6= 0); (* not at the end of the list *)

∗(Sp+8) := ∗(Sp+8) + 1 ; (* increment the length counter *)

Rv := ∗(Sp+4) ; (* get the next pointer *)

∗(Sp+4) = ∗Rv (* update "current" *)

The references from the stack pointer Sp are to local variables. Sp+8 is the
location of the length counter, and Sp+4 is the location of the “current” pointer.
The first line is the result of knowing that the conditional comparing current to
null returned false, implying that evaluation is not at the end of the list, which
justifies the memory dereference on the last line where the code reads the next

pointer of the current linked-list cell (∗∗(Sp+4)).
In order to exploit this information during symbolic execution, our symbolic

executor uses the following hint, provided in a hint database:

Lemma llist_cons_fwd : ∀ ls (p : W), p 6= 0
→ llist ls p ` ∃ x, ∃ ls’, d ls = x :: ls’ e ∗ ∃ p’, (p 7→ x, p’) ∗ llist ls’ p’.

This lemma is fed to the reflective rewriting framework discussed in Section 3.4,
which exposes the 7→ predicate that symbolic execution knows how to interpret7.

7 Not just 7→ but also some other “base” predicates are interpreted by independent,
user-defined reflective procedures that plug into our symbolic execution framework.

Compositional Computational Reflection 13

0.5 1 1.5

Loop

1-Shot

Time (s)

SymEval1

Autorewrite

SymEval2

Fig. 4. Profiling of 1-shot symbolic execution versus Ltac composition with
autorewrite on the small example goal.

Without this mechanism, we could achieve the same automation by run-
ning an Ltac loop bouncing between our reflective symbolic execution and the
autorewrite tactic to perform this rewriting. In the above example, this loop
would call symbolic execution, which would get stuck on the final instruction,
falling back on autorewrite to expose the cons cell, enabling a second call to
symbolic evaluation to complete the task.

Figure 4 shows how the loop approach compares to our fully reflective pro-
cedure (1-Shot). Using the latter, the entire symbolic execution takes 0.39 sec-
onds, less than half the amount of time (0.89 seconds) taken by autorewrite

to perform just the rewriting. Overall the reflective composition results in a
4.6x speedup over the Ltac-based composition on this goal, translating into 44
seconds when applied to the entire linked-list module.

While our reflective rewriter is not as powerful as autorewrite, it is cus-
tomizable in the same way. Further, because it is written in Gallina rather than
hardcoded inside Coq, we can extend it with smarter unification that, for exam-
ple, can reason about provable rather than just definitional equality.

4.3 Limitations & Future Work

MirrorShard’s success as the core automation for Bedrock is strong evidence
for its expressivity. However, the expressivity of Coq’s logic limits the power of
reflective procedures.

MirrorShard’s computational formulation of constraints relies crucially on
constants in certain places, for example the indices of types. For example, while
it is easy to write a procedure that is sound for any environment where nat is
located at position 1, it is more difficult to write a procedure parametrized by x

that is sound for any environment where nat is at position x. While it is possible
to manipulate proofs explicitly and achieve the latter degree of parametrization,
in this work we have opted for the simpler solution. As we expand the ideas and
techniques beyond separation logic, developing more parametrized procedures
will likely become more important.

MirrorShard’s syntax does not support a general notion of binders, only
existential quantifiers in separation-logic formulas. While this limitation has not
been problematic for entailment checking and symbolic execution, it prevents us
from reasoning about e.g. inline functions and match expressions. Supporting a
general notion of binder may provide a way to automate reflectively some of the

14 Malecha, Chlipala, Braibant

tasks that we currently accomplish in Ltac, increasing the scope of reflection and
further improving performance.

While binders should be within our grasp, restrictions of the logic put other
features, like general support for polymorphic types, farther out of reach. Type
functions can be encoded for special fixed arities, but a general solution allow-
ing arbitrary arities requires universe polymorphism. Universe polymorphism as
described by Harper and Pollack [12] is slated for Coq 8.5 and will solve some
of these issues.

Finally, general value-dependent types pose an even greater problem. The
MirrorShard representation stratifies the type and term languages, but truly
dependent types would require these to be unified, making the type of the de-
notation function mention itself in the style of very dependent functions [13].

5 Related Work

MirrorShard is not the first verified implementation of separation-logic automa-
tion, but it is the first to support modular user extension. Marti and Affeldt [15]
implemented a verified version of Smallfoot [1], and Stewart et al. [17] verified a
more sophisticated heap theorem prover based on paramodulation. Both of these
systems are limited to the standard points-to and singly-linked list predicates,
and extending either to support user-defined abstract predicates with equations
would likely require a considerable overhaul of both the procedure and its proof.

While program verification is our application, our technical contributions are
our techniques for phrasing, composing, and extending reflective procedures and
their proofs. The applicability of these techniques extends well beyond program
verification. Several projects have built large, generic reflective procedures. In his
PhD thesis, Lescuyer [14] describes a reflective implementation of an SMT solver.
While he also uses an environment-based representation, he is unable to reason
about it semantically. As a result, it is not clear how to support first-class hint
databases or include additional theories that need to reason semantically about
symbols represented using the environment. Our work also supports quantifiers.

Similar to our rewriting engine is the work by Braibant and Pous on reasoning
modulo associativity and commutativity [3]. Like Lescuyer, they specialize their
procedures for reasoning semantically about a fixed set of symbols (in their
case an abstract commutative, associative operator), which removes the need to
reason about multiple types or multiple operators. Our techniques support both.

Recent work by Claret et al. [5] on posterior simulation for reflective proofs
aims to make it easier to write reflective procedures by supporting side effects
and branching proof search efficiently. This goal is complementary to our own
work and offers a method of automatic caching for results of the (potentially
large) proof searches that our extensible procedures enable. This caching may
become essential if reflective procedures begin to rely heavily on speculation.

In the wider sphere of proof automation, Mtac [18] proposes a monadic lan-
guage for writing Gallina terms that are run during program elaboration. Un-
like MirrorShard, Mtac supports dependent and polymorphic types; however, its

Compositional Computational Reflection 15

support for binder manipulation is less sophisticated. For example, it does not
appear to be possible to apply lemmas without knowing their types a priori,
making it difficult to parametrize by lemmas that are applied automatically.

The Ssreflect tactic library [10] has become a popular alternative to Ltac.
Ssreflect provides a higher-level tactic language and support for “small-scale”
reflection. The tactics aim to make it easier to refactor proofs and lemmas, but
it is still focused on smaller reasoning steps. This approach avoids the need to
compose reflective procedures but requires more effort by the user to determine
and perform the appropriate reasoning explicitly.

One of the core problems that we overcome in our formulation is the expres-
sion problem. Our concrete syntax is similar to that of Garillot and Werner [9],
though their work does not suggest any methods for achieving semantic reason-
ing, which is essential to reasoning about actual terms. Delaware et al. [8] recently
proposed another solution to this problem using Church encodings. While useful
for reasoning about the metatheoretic properties of programming languages, it is
not clear that Church encodings completely solve the issues that arise in compu-
tational reflection. In particular, representing terms as functions can make them
costly to compute with and type check.

6 Conclusions

In this work we presented three novel techniques for building extensible reflective
procedures in Coq. First, we presented a reflected representation of unification
variables and existential quantifiers, which we reason about using a verified unifi-
cation algorithm. Our second technique is a simple encoding of extensible syntax
suitable for computational reflection, plus a formulation of constraints that al-
lows reasoning about this representation without any runtime overhead. Our
third technique is a method for building first-class, reflected hint databases that
can be used by reflective procedures.

These techniques form the core technical insights of MirrorShard, a reusable
Coq library for reflective procedures about separation logic. The extensibility of
these procedures allows them to reason about broader problems by reflectively
orchestrating general and domain-specific reasoning. Our evaluation shows that
this approach can provide a significant speedup over performing the extensible
reasoning in a hybrid of reflective procedures and Ltac.

Acknowledgments. The authors thank Patrick Hulin and Edward Z. Yang for their
contributions to the MirrorShard implementation. We received helpful feedback on
this paper from: Andrew W. Appel, Jesper Bengtson, Josiah Dodds, Georges Gonthier,
Daniel Huang, Andrew Johnson, Jacques-Henri Jourdan, Scott Moore, Greg Morrisett,
and Kenneth Roe. This work has been supported in part by a Facebook Fellowship,
an NSF Graduate Research Fellowship, NSF grant CCF-1253229, AFRL under agree-
ment FA8650-10-C-7090, and DARPA under agreement number FA8750-12-2-0293. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions

16 Malecha, Chlipala, Braibant

contained herein are those of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

References

1. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In Proc. FMCO, volume 4111
of LNCS, pages 115–137. Springer-Verlag, 2005.

2. Samuel Boutin. Using reflection to build efficient and certified decision procedures.
In Proc. TACS, 1997.

3. Thomas Braibant and Damien Pous. Tactics for reasoning modulo AC in Coq. In
CPP, pages 167–182, 2011.

4. Adam Chlipala. The Bedrock structured programming system: Combining genera-
tive metaprogramming and Hoare logic in an extensible program verifier. In Proc.
ICFP, pages 391–402. ACM, 2013.

5. Guillaume Claret, Lourdes Del Carmen Gonzalez Huesca, Yann Régis-Gianas, and
Beta Ziliani. Lightweight proof by reflection using a posteriori simulation of effect-
ful computation. In Interactive Theorem Proving, Rennes, France, July 2013.

6. Coq Development Team. The Coq proof assistant reference manual, version 8.4.
2012.

7. David Delahaye. A tactic language for the system Coq. In Proc. LPAR, 2000.
8. Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers. Meta-theory a

la carte. SIGPLAN Not., 48(1):207–218, January 2013.
9. Franois Garillot and Benjamin Werner. Simple types in type theory: Deep and

shallow encodings. In Theorem Proving in Higher Order Logics, volume 4732 of
LNCS, pages 368–382. Springer Berlin Heidelberg, 2007.

10. Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale Reflection
Extension for the Coq System. Rapport de recherche RR-6455, INRIA, 2008.

11. Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong reduc-
tion. In Proc. ICFP, 2002.

12. Robert Harper and Robert Pollack. Type checking with universes. Theoretical
Computer Science, 89(1):107 – 136, 1991.

13. Jason J. Hickey. Formal objects in type theory using very dependent types. In
Foundations of Object Oriented Languages 3, 1996.

14. Stéphane Lescuyer. Formalisation et développement d’une tactique réflexive pour
la démonstration automatique en Coq. Thèse de doctorat, Université Paris-Sud,
January 2011.

15. Nicolas Marti and Reynald Affeldt. A certified verifier for a fragment of separation
logic. Computer Software, 25(3):135–147, 2008.

16. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proc. LICS, pages 55–74. IEEE Computer Society, 2002.

17. Gordon Stewart, Lennart Beringer, and Andrew W. Appel. Verified heap theorem
prover by paramodulation. In Proc. ICFP, 2012.

18. Beta Ziliani, Derek Dreyer, Neel Krishnaswami, Aleksandar Nanevski, and Viktor
Vafeiadis. Mtac: A monad for typed tactic programming in Coq. In Proc. ICFP,
2013.

	Lecture Notes in Computer Science
	1 Introduction
	2 Simple Entailment: A Computational Reflection Primer
	3 Composing Procedures
	3.1 Syntax
	3.2 Binders & Unification Variables
	3.3 Compositional Semantic Reasoning
	3.4 Generic Extension with Reified Lemmas

	4 Evaluation & Discussion
	4.1 The Verification Procedure
	4.2 Reflective Performance
	4.3 Limitations & Future Work

	5 Related Work
	6 Conclusions

